Chapter 21

Blood Vessels and Circulation

An Introduction to Blood Vessels and Circulation

- Blood Vessels
 - o Are classified by size and histological organization
 - o Are instrumental in overall cardiovascular regulation

21-1 Classes of Blood Vessels

- Arteries
 - Carry blood away from heart
- Arterioles
 - o Are smallest branches of arteries
- Capillaries
 - Are smallest blood vessels
 - o Location of exchange between blood and interstitial fluid
- Venules
 - o Collect blood from capillaries
- Veins
 - Return blood to heart

21-1 Blood Vessels

- The Largest Blood Vessels
 - Attach to heart
 - Pulmonary trunk
 - Carries blood from right ventricle
 - To pulmonary circulation
 - o Aorta
 - Carries blood from left ventricle
 - To systemic circulation

21-1 Blood Vessels

- The Smallest Blood Vessels
 - Capillaries
 - Have small diameter and thin walls
 - Chemicals and gases diffuse across walls

21-1 Blood Vessels

• The Structure of Vessel Walls

- Walls have three layers
 - 1. Tunica intima
 - 2. Tunica media
 - 3. Tunica externa

21-1 Blood Vessels

- The **Tunica Intima** (Inner Layer)
 - Includes:
 - The endothelial lining
 - Connective tissue layer
 - Internal elastic membrane
 - o In arteries, is a layer of elastic fibers in outer margin of tunica intima

21-1 Blood Vessels

- The Tunica Media (Middle Layer)
 - Contains concentric sheets of smooth muscle in loose connective tissue
 - o Binds to inner and outer layers
 - External elastic membrane of the tunica media
 - Separates tunica media from tunica externa

21-1 Blood Vessels

- The Tunica Externa (Outer Layer)
 - o Anchors vessel to adjacent tissues in arteries
 - Contains collagen fibers
 - Elastic fibers
 - o In veins
 - Contains elastic fibers
 - Smooth muscle cells
 - Vasa vasorum ("vessels of vessels")
 - Small arteries and veins
 - In walls of large arteries and veins
 - Supply cells of tunica media and tunica externa

21-1 Blood Vessels

- Differences between Arteries and Veins
 - Arteries and veins run side by side
 - Arteries have thicker walls and higher blood pressure
 - Collapsed artery has small, round lumen (internal space)
 - Vein has a large, flat lumen
 - Vein lining contracts, artery lining does not
 - Artery lining folds
 - Arteries more elastic
 - Veins have valves

21-1 Structure and Function of Arteries

- Arteries
 - Elasticity allows arteries to absorb pressure waves that come with each heartbeat
 - o Contractility
 - Arteries change diameter
 - Controlled by sympathetic division of ANS
 - Vasoconstriction
 - \circ $\,$ The contraction of arterial smooth muscle by the ANS $\,$
 - Vasodilation
 - The relaxation of arterial smooth muscle
 - Enlarging the lumen

21-1 Structure and Function of Arteries

- Vasoconstriction and Vasodilation
 - o Affect:
 - 1. Afterload on heart
 - 2. Peripheral blood pressure
 - 3. Capillary blood flow

21-1 Structure and Function of Arteries

- Arteries
 - From heart to capillaries, arteries change
 - From elastic arteries
 - To muscular arteries
 - To arterioles

21-1 Structure and Function of Arteries

- Elastic Arteries
 - Also called *conducting arteries*
 - Large vessels (e.g., pulmonary trunk and aorta)
 - o Tunica media has many elastic fibers and few muscle cells
 - o Elasticity evens out pulse force

21-1 Structure and Function of Arteries

• Muscular Arteries

- Also called *distribution* arteries
- Are medium sized (most arteries)
- Tunica media has many muscle cells

21-1 Structure and Function of Arteries

- Arterioles
 - Are small
 - Have little or no tunica externa
 - Have thin or incomplete tunica media

21-1 Structure and Function of Arteries

- Artery Diameter
 - Small muscular arteries and arterioles
 - Change with sympathetic or endocrine stimulation
 - Constricted arteries oppose blood flow
 - Resistance (R)
 - Resistance vessels arterioles

21-1 Structure and Function of Arteries

- Aneurysm
 - A bulge in an arterial wall
 - Is caused by weak spot in elastic fibers
 - Pressure may rupture vessel

21-1 Structure and Function of Capillaries

- Capillaries
 - Are smallest vessels with thin walls
 - Microscopic capillary networks permeate all active tissues
 - Capillary function
 - Location of all exchange functions of cardiovascular system
 - Materials diffuse between blood and interstitial fluid

21-1 Structure and Function of Capillaries

- Capillary Structure
 - o Endothelial tube, inside thin basement membrane
 - No tunica media
 - No tunica externa
 - o Diameter is similar to red blood cell

21-1 Structure and Function of Capillaries

• Continuous Capillaries

- Have complete endothelial lining
- o Are found in all tissues except epithelia and cartilage
- Functions of continuous capillaries
 - Permit diffusion of water, small solutes, and lipid-soluble materials
 - Block blood cells and plasma proteins

21-1 Structure and Function of Capillaries

- Specialized Continuous Capillaries
 - Are in CNS and thymus
 - Have very restricted permeability
 - For example, the blood-brain barrier

21-1 Structure and Function of Capillaries

• Fenestrated Capillaries

- o Have pores in endothelial lining
- Permit rapid exchange of water and larger solutes between plasma and interstitial fluid
- Are found in:
 - Choroid plexus
 - Endocrine organs
 - Kidneys
 - Intestinal tract

21-1 Structure and Function of Capillaries

• Sinusoids (Sinusoidal Capillaries)

- Have gaps between adjacent endothelial cells
 - Liver
 - Spleen
 - Bone marrow
 - Endocrine organs
- Permit free exchange
 - Of water and large plasma proteins
 - Between blood and interstitial fluid
- Phagocytic cells monitor blood at sinusoids

21-1 Structure and Function of Capillaries

• Capillary Beds (Capillary Plexus)

- o Connect one arteriole and one venule
- Precapillary sphincter
 - Guards entrance to each capillary
 - Opens and closes, causing capillary blood to flow in pulses

21-1 Structure and Function of Capillaries

• Thoroughfare Channels

- o Direct capillary connections between arterioles and venules
- Controlled by smooth muscle segments (metarterioles)

21-1 Structure and Function of Capillaries

Collaterals

- Multiple arteries that contribute to one capillary bed
- Allow circulation if one artery is blocked
- Arterial anastomosis
 - Fusion of two collateral arteries
- Arteriovenous anastomoses
 - Direct connections between arterioles and venules
 - Bypass the capillary bed

21-1 Structure and Function of Capillaries

• Angiogenesis

- Formation of new blood vessels
- Vascular endothelial growth factor (VEGF)
- Occurs in the embryo as tissues and organs develop
- Occurs in response to factors released by cells that are *hypoxic*, or oxygen-starved
 - Most important in cardiac muscle, where it takes place in response to a chronically constricted or occluded vessel

21-1 Structure and Function of Capillaries

Vasomotion

- o Contraction and relaxation cycle of capillary sphincters
- o Causes blood flow in capillary beds to constantly change routes

21-1 Structure and Function of Veins

- Veins
 - Collect blood from capillaries in tissues and organs
 - Return blood to heart
 - Are larger in diameter than arteries
 - Have thinner walls than arteries
 - Have lower blood pressure

21-1 Structure and Function of Veins

- Venules
 - Very small veins
 - Collect blood from capillaries
- Medium-Sized Veins
 - o Thin tunica media and few smooth muscle cells
 - Tunica externa with longitudinal bundles of elastic fibers

21-1 Structure and Function of Veins

• Large Veins

- Have all three *tunica* layers
- Thick tunica externa
- o Thin tunica media
- Venous Valves
 - Folds of tunica intima
 - Prevent blood from flowing backward
 - o Compression pushes blood toward heart

21-1 Blood Vessels

- The Distribution of Blood
 - Heart, arteries, and capillaries
 - 30–35 percent of blood volume
 - Venous system
 - 60–65 percent
 - 1/3 of venous blood is in the large venous networks of the liver, bone marrow, and skin

21-1 Blood Vessels

- Capacitance of a Blood Vessel
 - The ability to stretch
 - Relationship between blood volume and blood pressure
 - Veins (capacitance vessels) stretch more than arteries

21-1 Blood Vessels

- Venous Response to Blood Loss
 - Vasomotor center stimulates sympathetic nerves
 - Systemic veins constrict (venoconstriction)
 - Veins in liver, skin, and lungs redistribute venous reserve

21-2 Pressure and Resistance

- Total Capillary Blood Flow
 - Equals cardiac output
 - Is determined by:
 - Pressure (P) and resistance (R) in the cardiovascular system

- Pressure (*P*)
 - The heart generates P to overcome resistance
 - o Absolute pressure is less important than pressure gradient

- The *Pressure Gradient* (ΔP)
 - Circulatory pressure
 - The difference between:
 - Pressure at the heart
 - And pressure at peripheral capillary beds

21-2 Pressure and Resistance

- Flow (*F*)
 - Is proportional to the pressure difference (ΔP)
 - \circ Divided by R

21-2 Pressure and Resistance

- Measuring Pressure
 - Blood pressure (BP)
 - Arterial pressure (mm Hg)
 - Capillary hydrostatic pressure (CHP)
 Pressure within the capillary beds
 - Venous pressure
 - Pressure in the venous system

21-2 Pressure and Resistance

- Circulatory Pressure
 - $\circ \Delta P$ across the systemic circuit (about 100 mm Hg)
 - Circulatory pressure must overcome total peripheral resistance
 - R of entire cardiovascular system

21-2 Pressure and Resistance

- Total Peripheral Resistance
 - Vascular resistance
 - Blood viscosity
 - Turbulence

21-2 Pressure and Resistance

• Vascular Resistance

- Due to friction between blood and vessel walls
- Depends on vessel length and vessel diameter
 - Adult vessel length is constant
 - Vessel diameter varies by vasodilation and vasoconstriction
 R increases exponentially as vessel diameter decreases

- Viscosity
 - *R* caused by molecules and suspended materials in a liquid
 - \circ $\;$ Whole blood viscosity is about four times that of water

21-2 Pressure and Resistance

• Turbulence

- Swirling action that disturbs smooth flow of liquid
- Occurs in heart chambers and great vessels
- o Atherosclerotic plaques cause abnormal turbulence

21-2 Pressure and Resistance

- An Overview of Cardiovascular Pressures
 - Vessel diameters
 - Total cross-sectional areas
 - Pressures
 - Velocity of blood flow

21-2 Pressure and Resistance

- Arterial Blood Pressure
 - Systolic pressure
 - Peak arterial pressure during ventricular systole
 - Diastolic pressure
 - Minimum arterial pressure during diastole

21-2 Pressure and Resistance

- Arterial Blood Pressure
 - Pulse pressure
 - Difference between systolic pressure and diastolic pressure
 - Mean arterial pressure (MAP)
 - MAP = diastolic pressure + 1/3 pulse pressure

21-2 Pressure and Resistance

- Abnormal Blood Pressure
- Normal = 120/80
 - Hypertension
 - Abnormally high blood pressure
 Greater than 140/90
 - Hypotension
 - Abnormally low blood pressure

• Elastic Rebound

- o Arterial walls
 - Stretch during systole
 - Rebound (recoil to original shape) during diastole
 - Keep blood moving during diastole

21-2 Pressure and Resistance

- Pressures in Small Arteries and Arterioles
 - Pressure and distance
 - MAP and pulse pressure decrease with distance from heart
 - Blood pressure decreases with friction
 - Pulse pressure decreases due to elastic rebound

21-2 Pressure and Resistance

- Venous Pressure and Venous Return
 - o Determines the amount of blood arriving at right atrium each minute
 - Low effective pressure in venous system

21-2 Pressure and Resistance

- Venous Pressure and Venous Return
 - Low venous resistance is assisted by:
 - Muscular compression of peripheral veins
 - Compression of skeletal muscles pushes blood toward heart (oneway valves)
 - The respiratory pump
 - Thoracic cavity action
 - Inhaling decreases thoracic pressure
 - Exhaling raises thoracic pressure

21-2 Pressure and Resistance

- Capillary Pressures and Capillary Exchange
 - Vital to homeostasis
 - Moves materials across capillary walls by:
 - Diffusion
 - Filtration
 - Reabsorption

- Diffusion
 - Movement of ions or molecules
 - From high concentration
 - To lower concentration

• Along the *concentration gradient*

21-2 Pressure and Resistance

- Diffusion Routes
 - 1. Water, ions, and small molecules such as glucose
 - Diffuse between adjacent endothelial cells
 - Or through fenestrated capillaries
 - 2. Some ions $(Na^+, K^+, Ca^{2+}, Cl^-)$
 - Diffuse through channels in plasma membranes

21-2 Pressure and Resistance

- Diffusion Routes
 - Large, water-soluble compounds
 - Pass through fenestrated capillaries
 - \circ Lipids and lipid-soluble materials such as O_2 and CO_2
 - Diffuse through endothelial plasma membranes
 - Plasma proteins
 - Cross endothelial lining in sinusoids

21-2 Pressure and Resistance

- Filtration
 - Driven by hydrostatic pressure
 - Water and small solutes forced through capillary wall
 - Leaves larger solutes in bloodstream

21-2 Pressure and Resistance

- Reabsorption
 - The result of **osmotic pressure (OP)**
 - Blood colloid osmotic pressure (BCOP)
 - Equals pressure required to prevent osmosis
 - Caused by suspended blood proteins that are too large to cross capillary walls

21-2 Pressure and Resistance

- Interplay between Filtration and Reabsorption
 - 1. Ensures that plasma and interstitial fluid are in constant communication and mutual exchange
 - 2. Accelerates distribution of:
 - Nutrients, hormones, and dissolved gases throughout tissues

- Interplay between Filtration and Reabsorption
 - 3. Assists in the transport of:
 - Insoluble lipids and tissue proteins that cannot enter bloodstream by crossing capillary walls
 - 4. Has a flushing action that carries bacterial toxins and other chemical stimuli to:
 - Lymphatic tissues and organs responsible for providing immunity to disease

21-2 Pressure and Resistance

- Interplay between Filtration and Reabsorption
 - Net hydrostatic pressure
 - Forces water *out* of solution
 - Net osmotic pressure
 - Forces water into solution
 - o Both control filtration and reabsorption through capillaries

21-2 Pressure and Resistance

- Factors that Contribute to Net Hydrostatic Pressure
 - 1. Capillary hydrostatic pressure (CHP)
 - 2. Interstitial fluid hydrostatic pressure (IHP)
 - Net capillary hydrostatic pressure tends to push water and solutes:
 - Out of capillaries
 - Into interstitial fluid

21-2 Pressure and Resistance

- Net Capillary Colloid Osmotic Pressure
 - Is the difference between:
 - 1. Blood colloid osmotic pressure (BCOP) and
 - 2. Interstitial fluid colloid osmotic pressure (ICOP)
 - Pulls water and solutes:
 - Into a capillary
 - From interstitial fluid

21-2 Pressure and Resistance

- Net Filtration Pressure (NFP)
 - The difference between:
 - Net hydrostatic pressure
 - Net osmotic pressure

NFP = (CHP - IHP) - (BCOP - ICOP)

- Capillary Exchange
 - At arterial end of capillary:
 - Fluid moves *out* of capillary
 - Into interstitial fluid
 - At venous end of capillary:
 - Fluid moves into capillary
 - Out of interstitial fluid

21-2 Pressure and Resistance

- Capillary Exchange
 - Transition point between filtration and reabsorption
 - Is closer to venous end than arterial end
 - Capillaries filter more than they reabsorb
 - Excess fluid enters lymphatic vessels

21-2 Pressure and Resistance

- Capillary Dynamics
 - Hemorrhaging
 - Reduces CHP and NFP
 - Increases reabsorption of interstitial fluid (recall of fluids)
 - Dehydration
 - Increases BCOP
 - Accelerates reabsorption
 - Increase in CHP or BCOP declines
 - Fluid moves out of blood
 - Builds up in peripheral tissues (edema)

21-3 Cardiovascular Regulation

• Tissue Perfusion

- Blood flow through the tissues
- Carries O₂ and nutrients to tissues and organs
- Carries CO₂ and wastes away
- Is affected by:
 - Cardiac output
 - Peripheral resistance
 - Blood pressure

21-3 Cardiovascular Regulation

- Cardiovascular Regulation Changes Blood Flow to a Specific Area
 - 1. At an appropriate time
 - 2. In the right area
 - 3. Without changing blood pressure and blood flow to vital organs

21-3 Cardiovascular Regulation

- Controlling Cardiac Output and Blood Pressure
 - o Autoregulation
 - Causes immediate, localized homeostatic adjustments
 - o Neural mechanisms
 - Respond quickly to changes at specific sites
 - Endocrine mechanisms
 - Direct long-term changes

21-3 Cardiovascular Regulation

- Autoregulation of Blood Flow within Tissues
 - Adjusted by peripheral resistance while cardiac output stays the same
 - Local vasodilators accelerate blood flow at tissue level
 - \circ Low O₂ or high CO₂ levels
 - Low pH (acids)
 - Nitric oxide (NO)
 - \circ High K⁺ or H⁺ concentrations
 - o Chemicals released by inflammation (histamine)
 - Elevated local temperature

21-3 Cardiovascular Regulation

- Autoregulation of Blood Flow within Tissues
 - Adjusted by peripheral resistance while cardiac output stays the same
 - Local vasoconstrictors
 - Examples: prostaglandins and thromboxanes
 - Released by damaged tissues
 - Constrict precapillary sphincters
 - Affect a single capillary bed

21-3 Cardiovascular Regulation

- Neural Mechanisms
 - Cardiovascular (CV) centers of the medulla oblongata
 - Cardiac centers
 - o Cardioacceleratory center increases cardiac output
 - o Cardioinhibitory center reduces cardiac output

21-3 Cardiovascular Regulation

- Vasomotor Center
 - Control of vasoconstriction
 - Controlled by *adrenergic* nerves (NE)
 - Stimulates smooth muscle contraction in arteriole walls
 - Control of vasodilation

- Controlled by *cholinergic* nerves (NO)
- Relaxes smooth muscle
- Vasomotor Tone
 - Produced by constant action of sympathetic vasoconstrictor nerves

21-3 Cardiovascular Regulation

- Reflex Control of Cardiovascular Function
 - o Cardiovascular centers monitor arterial blood
 - Baroreceptor reflexes
 - Respond to changes in blood pressure
 - Chemoreceptor reflexes
 - Respond to changes in chemical composition, particularly pH and dissolved gases

21-3 Cardiovascular Regulation

- Baroreceptor Reflexes
 - Stretch receptors in walls of:
 - 1. Carotid sinuses (maintain blood flow to brain)
 - 2. Aortic sinuses (monitor start of systemic circuit)
 - 3. Right atrium (monitors end of systemic circuit)

21-3 Cardiovascular Regulation

- Baroreceptor Reflexes
 - When blood pressure rises, CV centers:
 - Decrease cardiac output
 - Cause peripheral vasodilation
 - When blood pressure falls, CV centers:
 - Increase cardiac output
 - Cause peripheral vasoconstriction

21-3 Cardiovascular Regulation

- Chemoreceptor Reflexes
 - Peripheral chemoreceptors in carotid bodies and aortic bodies monitor blood
 - Central chemoreceptors below medulla oblongata
 - Monitor cerebrospinal fluid
 - Control respiratory function
 - Control blood flow to brain

21-3 Cardiovascular Regulation

- Chemoreceptor Reflexes
 - Changes in pH, O₂, and CO₂ concentrations

• Produced by coordinating cardiovascular and respiratory activities

21-3 Cardiovascular Regulation

- CNS Activities and the Cardiovascular Centers
 - Thought processes and emotional states can elevate blood pressure by:
 - Cardiac stimulation and vasoconstriction

21-3 Cardiovascular Regulation

- Hormones and Cardiovascular Regulation
 - Hormones have short-term and long-term effects on cardiovascular regulation
 - For example, E and NE from adrenal medullae stimulate cardiac output and peripheral vasoconstriction

21-3 Cardiovascular Regulation

- Antidiuretic Hormone (ADH)
 - Released by neurohypophysis (posterior lobe of pituitary)
 - Elevates blood pressure
 - Reduces water loss at kidneys
 - ADH responds to:
 - Low blood volume
 - High plasma osmotic concentration
 - Circulating angiotensin II

21-3 Cardiovascular Regulation

- Angiotensin II
 - Responds to fall in renal blood pressure
 - Stimulates:
 - Aldosterone production
 - ADH production
 - Thirst
 - Cardiac output and peripheral vasoconstriction

21-3 Cardiovascular Regulation

- Erythropoietin (EPO)
 - Released at kidneys
 - Responds to low blood pressure, low O₂ content in blood
 - Stimulates red blood cell production

21-3 Cardiovascular Regulation

• Natriuretic Peptides

- Atrial natriuretic peptide (ANP)
 - Produced by cells in right atrium
- o Brain natriuretic peptide (BNP)
 - Produced by ventricular muscle cells
- Respond to excessive diastolic stretching
- Lower blood volume and blood pressure
- o Reduce stress on heart

21-4 Cardiovascular Adaptation

- Blood, Heart, and Cardiovascular System
 - Work together as unit
 - Respond to physical and physiological changes (for example, exercise and blood loss)
 - Maintain homeostasis

21-4 Cardiovascular Adaptation

- The Cardiovascular Response to Exercise
 - Light Exercise
 - Extensive vasodilation occurs, increasing circulation
 - Venous return increases with muscle contractions
 - Cardiac output rises
 - Venous return (Frank–Starling principle)
 - Atrial stretching

21-4 Cardiovascular Adaptation

- The Cardiovascular Response to Exercise
 - Heavy Exercise
 - Activates sympathetic nervous system
 - Cardiac output increases to maximum
 - About four times resting level
 - Restricts blood flow to "nonessential" organs (e.g., digestive system)
 - Redirects blood flow to skeletal muscles, lungs, and heart
 - Blood supply to brain is unaffected

21-4 Cardiovascular Adaptation

- Exercise, Cardiovascular Fitness, and Health
 - Regular moderate exercise
 - Lowers total blood cholesterol levels
 - o Intense exercise
 - Can cause severe physiological stress

21-4 Cardiovascular Adaptation

- The Cardiovascular Response to Hemorrhaging
 - Entire cardiovascular system adjusts to:
 - Maintain blood pressure
 - Restore blood volume

21-4 Cardiovascular Adaptation

- Short-Term Elevation of Blood Pressure
 - Carotid and aortic reflexes
 - Increase cardiac output (increasing heart rate)
 - Cause peripheral vasoconstriction
 - Sympathetic nervous system
 - Triggers hypothalamus
 - Further constricts arterioles
 - Venoconstriction improves venous return

21-4 Cardiovascular Adaptation

- Short-Term Elevation of Blood Pressure
 - Hormonal effects
 - Increase cardiac output
 - Increase peripheral vasoconstriction (E, NE, ADH, angiotensin II)

21-4 Cardiovascular Adaptation

- Shock
 - Short-term responses compensate after blood losses of up to 20 percent of total blood volume
 - Failure to restore blood pressure results in shock

21-4 Cardiovascular Adaptation

- Long-Term Restoration of Blood Volume
 - Recall of fluids from interstitial spaces
 - o Aldosterone and ADH promote fluid retention and reabsorption
 - Thirst increases
 - o Erythropoietin stimulates red blood cell production

21-4 Cardiovascular Adaptation

- Vascular Supply to Special Regions
 - Through organs with separate mechanisms to control blood flow
 - Three important examples
 - 1. Brain
 - 2. Heart
 - 3. Lungs

21-4 Cardiovascular Adaptation

- Blood Flow to the Brain
 - Is top priority
 - Brain has high oxygen demand
 - When peripheral vessels constrict, cerebral vessels dilate, normalizing blood flow

21-4 Cardiovascular Adaptation

- Stroke
 - Also called cerebrovascular accident (CVA)
 - Blockage or rupture in a cerebral artery
 - Stops blood flow

21-4 Cardiovascular Adaptation

- Blood Flow to the Heart
 - Through coronary arteries
 - o Oxygen demand increases with activity
 - Lactic acid and low O₂ levels
 - Dilate coronary vessels
 - Increase coronary blood flow

21-4 Cardiovascular Adaptation

- Blood Flow to the Heart
 - Epinephrine
 - Dilates coronary vessels
 - Increases heart rate
 - Strengthens contractions

21-4 Cardiovascular Adaptation

- Heart Attack
 - A blockage of coronary blood flow
 - Can cause:
 - Angina (chest pain)
 - Tissue damage
 - Heart failure
 - Death

21-4 Cardiovascular Adaptation

- Blood Flow to the Lungs
 - Regulated by O₂ levels in alveoli
 - High O₂ content

- Vessels dilate
- Low O₂ content
 - Vessels constrict

21-5 Pulmonary and Systemic Patterns

- Three General Functional Patterns
 - 1. Peripheral *artery* and *vein* distribution is the same on right and left, except near the heart
 - 2. The same vessel may have different names in different locations
 - 3. Tissues and organs usually have multiple arteries and veins
 - Vessels may be interconnected with anastomoses

21-6 The Pulmonary Circuit

- Deoxygenated Blood Arrives at Heart from Systemic Circuit
 - o Passes through right atrium and right ventricle
 - Enters pulmonary trunk
 - At the lungs
 - CO₂ is removed
 - O₂ is added
 - Oxygenated blood
 - Returns to the heart
 - Is distributed to systemic circuit

21-6 The Pulmonary Circuit

- Pulmonary Vessels
 - o Pulmonary arteries
 - Carry deoxygenated blood
 - Pulmonary trunk
 - o Branches to left and right pulmonary arteries
 - Pulmonary arteries
 - o Branch into pulmonary arterioles
 - Pulmonary arterioles
 - o Branch into capillary networks that surround alveoli

21-6 The Pulmonary Circuit

- Pulmonary Vessels
 - Pulmonary veins
 - Carry oxygenated blood
 - Capillary networks around alveoli

 Join to form venules
 - Venules
 - o Join to form four pulmonary veins
 - Pulmonary veins

• Empty into left atrium

21-7 The Systemic Circuit

- The Systemic Circuit
 - Contains 84 percent of blood volume
 - Supplies entire body
 - Except for pulmonary circuit

21-7 The Systemic Circuit

- Systemic Arteries
 - o Blood moves from left ventricle
 - Into ascending aorta
 - Coronary arteries
 - Branch from aortic sinus

21-7 The Systemic Circuit

- The Aorta
 - The **ascending aorta**
 - Rises from the left ventricle
 - Curves to form **aortic arch**
 - Turns downward to become descending aorta

Figure 21-20 Arteries of the Chest and Upper Limb.

21-7 The Systemic Circuit

- Branches of the Aortic Arch
 - Deliver blood to head, neck, shoulders, and upper limbs
 - 1. Brachiocephalic trunk
 - 2. Left common carotid artery
 - 3. Left subclavian artery

21-7 The Systemic Circuit

- The Subclavian Arteries
 - Leaving the thoracic cavity:
 - Become **axillary artery** in arm
 - And **brachial artery** distally

- The Brachial Artery
 - o Divides at coronoid fossa of humerus

- Into radial artery and ulnar artery
 - Fuse at wrist to form:
 - Superficial and deep palmar arches
 - Which supply digital arteries

- The Common Carotid Arteries
 - Each common carotid divides into:
 - External carotid artery supplies blood to structures of the neck, lower jaw, and face
 - Internal carotid artery enters skull and delivers blood to brain
 Divides into three branches
 - 1. Ophthalmic artery
 - 2. Anterior cerebral artery
 - 3. Middle cerebral artery

21-7 The Systemic Circuit

- The Vertebral Arteries
 - Also supply brain with blood
 - Left and right vertebral arteries
 - Arise from subclavian arteries
 - Enter cranium through foramen magnum
 - Fuse to form basilar artery
 - o Branches to form posterior cerebral arteries
 - Posterior cerebral arteries
 - Become posterior communicating arteries

21-7 The Systemic Circuit

- Anastomoses
 - The cerebral arterial circle (or circle of Willis) interconnects:
 - The internal carotid arteries
 - And the basilar artery

21-7 The Systemic Circuit

• The Descending Aorta

- Thoracic aorta
 - Supplies organs of the chest
 - Bronchial arteries
 - o Pericardial arteries
 - Esophageal arteries
 - Mediastinal arteries
 - Supplies chest wall

- Intercostal arteries
- Superior phrenic arteries

• The Descending Aorta

• Abdominal Aorta

- Divides at terminal segment of the aorta into:
 - Left common iliac artery
 - Right common iliac artery
- Unpaired branches
 - Major branches to visceral organs
 - Paired branches
 - \circ $\,$ To body wall
 - \circ Kidneys

- Urinary bladder
- o Structures outside abdominopelvic cavity

21-7 The Systemic Circuit

- Arteries of the Pelvis and Lower Limbs
 - Femoral artery
 - Deep femoral artery
 - Becomes popliteal artery
 - Posterior to knee
 - Branches to form:
 - **Posterior** and **anterior tibial arteries**
 - Posterior gives rise to **fibular artery**

21-7 The Systemic Circuit

- Systemic Veins
 - Complementary Arteries and Veins
 - Run side by side
 - Branching patterns of peripheral veins are more variable
 - In neck and limbs
 - One set of arteries (deep)
 - Two sets of veins (one deep, one superficial)
 - Venous system controls body temperature

- The Superior Vena Cava (SVC)
 - Receives blood from the tissues and organs of:
 - Head
 - Neck
 - Chest

- Shoulders
- Upper limbs

- The Dural Sinuses
 - Superficial cerebral veins and small veins of the brain stem
 - Empty into network of dural sinuses
 - Superior and inferior sagittal sinuses
 - Petrosal sinuses
 - Occipital sinus
 - Left and right transverse sinuses
 - Straight sinus

21-7 The Systemic Circuit

- Cerebral Veins
 - Great cerebral vein
 - Drains to straight sinus
 - o Other cerebral veins
 - Drain to cavernous sinus
 - Which drains to petrosal sinus
- Vertebral Veins
 - Empty into brachiocephalic veins of chest

21-7 The Systemic Circuit

- Superficial Veins of the Head and Neck
 - Converge to form:
 - Temporal, facial, and maxillary veins
 - Temporal and maxillary veins
 - Drain to external jugular vein
 - \circ Facial vein
 - Drains to internal jugular vein

21-7 The Systemic Circuit

- Veins of the Hand
 - Digital veins
 - Empty into superficial and deep palmar veins
 - Which interconnect to form palmar venous arches

- Veins of the Hand
 - Superficial arch empties into:

- Cephalic vein
- Median antebrachial vein
- Basilic vein
- Median cubital vein
- Deep palmar veins drain into:
 - Radial and ulnar veins
 - Which fuse above elbow to form brachial vein

- The Brachial Vein
 - Merges with basilic vein
 - To become axillary vein
 - Cephalic vein joins axillary vein
 - To form **subclavian vein**
 - o Merges with external and internal jugular veins
 - To form brachiocephalic vein
 - Which enters thoracic cavity

21-7 The Systemic Circuit

- Veins of the Thoracic Cavity
 - Brachiocephalic vein receives blood from:
 - Vertebral vein
 - Internal thoracic vein
 - The Left and Right Brachiocephalic Veins
 - Merge to form the superior vena cava (SVC)

21-7 The Systemic Circuit

- Tributaries of the Superior Vena Cava
 - Azygos vein and hemiazygos vein, which receive blood from:
 - Intercostal veins
 - Esophageal veins
 - Veins of other mediastinal structures

21-7 The Systemic Circuit

- The Inferior Vena Cava (IVC)
 - Collects blood from organs inferior to the diaphragm

- Veins of the Foot
 - Capillaries of the sole
 - Drain into a network of plantar veins

- Which supply the **plantar venous arch**
- Drain into deep veins of leg:
 - Anterior tibial vein
 - Posterior tibial vein
 - Fibular vein
 - All three join to become popliteal vein

- The Dorsal Venous Arch
 - \circ $\,$ Collects blood from:
 - Superior surface of foot
 - Digital veins
 - Drains into two superficial veins
 - 1. Great saphenous vein (drains into femoral vein)
 - 2. Small saphenous vein (drains into popliteal vein)

21-7 The Systemic Circuit

- The Popliteal Vein
 - Becomes the **femoral vein**
 - Before entering abdominal wall, receives blood from:
 - Great saphenous vein
 - Deep femoral vein
 - Femoral circumflex vein
 - Inside the pelvic cavity
 - Becomes the external iliac vein

21-7 The Systemic Circuit

- The External Iliac Veins
 - Are joined by **internal iliac veins**
 - To form right and left common iliac veins
 - The right and left common iliac veins
 - Merge to form the inferior vena cava

- Major Tributaries of the Abdominal Inferior Vena Cava
 - 1. Lumbar veins
 - 2. Gonadal veins
 - 3. Hepatic veins
 - 4. Renal veins
 - 5. Adrenal veins
 - 6. Phrenic veins

- The Hepatic Portal System
 - Connects two capillary beds
 - o Delivers nutrient-laden blood
 - From capillaries of digestive organs
 - To liver sinusoids for processing

21-7 The Systemic Circuit

- Tributaries of the Hepatic Portal Vein
 - 1. Inferior mesenteric vein
 - Drains part of large intestine
 - 2. Splenic vein
 - Drains spleen, part of stomach, and pancreas
 - 3. Superior mesenteric vein
 - Drains part of stomach, small intestine, and part of large intestine
 - 4. Left and right gastric veins
 - Drain part of stomach
 - 5. Cystic vein
 - Drains gallbladder

21-7 The Systemic Circuit

- Blood Processed in Liver
 - After processing in liver sinusoids (exchange vessels):
 - Blood collects in hepatic veins and empties into inferior vena cava

21-8 Fetal and Maternal Circulation

- Fetal and Maternal Cardiovascular Systems Promote the Exchange of Materials
 - Embryonic lungs and digestive tract nonfunctional
 - Respiratory functions and nutrition provided by placenta

21-8 Fetal and Maternal Circulation

- Placental Blood Supply
 - Blood flows to the placenta
 - Through a pair of umbilical arteries that arise from internal iliac arteries
 - Enters umbilical cord
 - Blood returns from placenta
 - In a single umbilical vein that drains into ductus venosus
 - Ductus venosus
 - Empties into inferior vena cava

21-8 Fetal and Maternal Circulation

- Before Birth
 - Fetal lungs are collapsed
 - O₂ provided by placental circulation

21-8 Fetal and Maternal Circulation

- Fetal Pulmonary Circulation Bypasses
 - Foramen ovale
 - Interatrial opening
 - Covered by valve-like flap
 - Directs blood from right to left atrium
 - Ductus arteriosus
 - Short vessel
 - Connects pulmonary and aortic trunks

21-8 Fetal and Maternal Circulation

- Cardiovascular Changes at Birth
 - o Newborn breathes air
 - Lungs expand
 - Pulmonary vessels expand
 - Reduced resistance allows blood flow
 - Rising O₂ causes ductus arteriosus constriction
 - Rising left atrium pressure closes foramen ovale
 - Pulmonary circulation provides O₂

21-8 Fetal and Maternal Circulation

- Patent Foramen Ovale and Patent Ductus Arteriosus
 - In patent (open) foramen ovale blood recirculates through pulmonary circuit instead of entering left ventricle
 - The movement, driven by relatively high systemic pressure, is a "leftto-right shunt"
 - Arterial oxygen content is normal, but left ventricle must work much harder than usual to provide adequate blood flow through systemic circuit

21-8 Fetal and Maternal Circulation

- Patent Foramen Ovale and Patent Ductus Arteriosus
 - Pressures rise in the pulmonary circuit
 - If pulmonary pressures rise enough, they may force blood into systemic circuit through ductus arteriosus
 - A patent ductus arteriosus creates a "right-to-left shunt"
 - Because circulating blood is not adequately oxygenated, it develops

deep red color

 Skin develops blue tones typical of cyanosis and infant is known as a "blue baby"

21-8 Fetal and Maternal Circulation

- Tetralogy of Fallot
 - Complex group of heart and circulatory defects that affect 0.10 percent of newborn infants
 - 1. Pulmonary trunk is abnormally narrow (pulmonary stenosis)
 - 2. Interventricular septum is incomplete
 - 3. Aorta originates where interventricular septum normally ends
 - 4. Right ventricle is enlarged and both ventricles thicken in response to increased workload

21-8 Fetal and Maternal Circulation

- Ventricular Septal Defect
 - Openings in interventricular septum that separate right and left ventricles
 - The most common congenital heart problems, affecting 0.12 percent of newborns
 - Opening between the two ventricles has an effect similar to a connection between the atria
 - When more powerful left ventricle beats, it ejects blood into right ventricle and pulmonary circuit

21-8 Fetal and Maternal Circulation

- Atrioventricular Septal Defect
 - Both the atria and ventricles are incompletely separated
 - Results are quite variable, depending on extent of defect and effects on atrioventricular valves
 - This type of defect most commonly affects infants with Down's syndrome, a disorder caused by the presence of an extra copy of chromosome 21

21-8 Fetal and Maternal Circulation

- Transposition of Great Vessels
 - The aorta is connected to right ventricle instead of to left ventricle
 - The pulmonary artery is connected to left ventricle instead of right ventricle
 - This malformation affects 0.05 percent of newborn infants

21-9 Effects of Aging and the Cardiovascular System

- Cardiovascular Capabilities Decline with Age
- Age-related changes occur in:

- o Blood
- o Heart
- Blood vessels

21-9 Effects of Aging and the Cardiovascular System

- Three Age-Related Changes in Blood
 - 1. Decreased hematocrit
 - 2. Peripheral blockage by blood clot (*thrombus*)
 - 3. Pooling of blood in legs
 - Due to venous valve deterioration

21-9 Effects of Aging and the Cardiovascular System

- Five Age-Related Changes in the Heart
 - 1. Reduced maximum cardiac output
 - 2. Changes in nodal and conducting cells
 - 3. Reduced elasticity of cardiac (fibrous) skeleton
 - 4. Progressive atherosclerosis
 - 5. Replacement of damaged cardiac muscle cells by scar tissue

21-9 Effects of Aging and the Cardiovascular System

- Three Age-Related Changes in Blood Vessels
 - 1. Arteries become less elastic
 - Pressure change can cause aneurysm
 - 2. Calcium deposits on vessel walls
 - Can cause stroke or infarction
 - 3. Thrombi can form
 - At atherosclerotic plaques

21-9 Cardiovascular System Integration

- Many Categories of Cardiovascular Disorders
 - Disorders may:
 - Affect all cells and systems
 - Be structural or functional
 - Result from disease or trauma