Chapter 18

The Endocrine System

An Introduction to the Endocrine System

- The Endocrine System
 - Regulates long-term processes
 - Growth
 - Development
 - Reproduction
 - Uses chemical messengers to relay information and instructions between cells

18-1 Homeostasis and Intercellular Communication

- Direct Communication
 - Exchange of ions and molecules between adjacent cells across gap junctions
 - Occurs between two cells of same type
 - Highly specialized and relatively rare
- Paracrine Communication
 - Uses chemical signals to transfer information from cell to cell within single tissue
 - o Most common form of intercellular communication

18-1 Homeostasis and Intercellular Communication

• Endocrine Communication

- Endocrine cells release chemicals (hormones) into bloodstream
- o Alters metabolic activities of many tissues and organs simultaneously

18-1 Homeostasis and Intercellular Communication

- Target Cells
 - Are specific cells that possess receptors needed to bind and "read" hormonal messages
- Hormones
 - Stimulate synthesis of enzymes or structural proteins
 - o Increase or decrease rate of synthesis
 - o Turn existing enzyme or membrane channel "on" or "off"

18-1 Homeostasis and Intercellular Communication

• Synaptic Communication

- Ideal for crisis management
- Occurs across synaptic clefts
- o Chemical message is "neurotransmitter"
- Limited to a very specific area

- Classes of Hormones
 - Hormones can be divided into three groups
 - 1. Amino acid derivatives
 - 2. Peptide hormones
 - 3. Lipid derivatives
- Secretion and Distribution of Hormones
 - Hormones circulate freely or travel bound to special carrier proteins

18-2 Hormones

- Amino Acid Derivatives
 - o Are small molecules structurally related to amino acids
 - Derivatives of tyrosine
 - Thyroid hormones
 - o Catecholamines
 - Epinephrine, norepinephrine
 - Derivatives of tryptophan
 - Dopamine, serotonin, melatonin

18-2 Hormones

- Peptide Hormones
 - Are chains of amino acids
 - Most are synthesized as prohormones
 - Inactive molecules converted to active hormones before or after they are secreted
 - Glycoproteins
 - Proteins are more than 200 amino acids long and have carbohydrate side chains
 - Thyroid-stimulating hormone (TSH)
 - Luteinizing hormone (LH)
 - Follicle-stimulating hormone (FSH)

- Peptide Hormones
 - Short polypeptides/small proteins
 - Short chain polypeptides
 - Antidiuretic hormone (ADH) and oxytocin (OXT) (each 9 amino acids long)

- Small proteins
 - *Growth hormone (GH*; 191 amino acids) and *prolactin (PRL*; 198 amino acids)
- Includes all hormones secreted by:
 - Hypothalamus, heart, thymus, digestive tract, pancreas, and posterior lobe of the pituitary gland, as well as several hormones produced in other organs

- Lipid Derivatives
 - Eicosanoids derived from arachidonic acid, a 20-carbon fatty acid
 - Paracrine factors that coordinate cellular activities and affect enzymatic processes (such as blood clotting) in extracellular fluids
 - Some eicosanoids (such as leukotrienes) have secondary roles as hormones
 - A second group of eicosanoids prostaglandins involved primarily in coordinating local cellular activities
 - In some tissues, prostaglandins are converted to thromboxanes and prostacyclins, which also have strong paracrine effects

18-2 Hormones

- Lipid Derivatives
 - Steroid hormones derived from cholesterol
 - Released by:
 - The reproductive organs (androgens by the testes in males, estrogens and progestins by the ovaries in females)
 - The cortex of the adrenal glands (corticosteroids)
 - The kidneys (calcitriol)
 - Because circulating steroid hormones are bound to specific transport proteins in the plasma:
 - They remain in circulation longer than secreted peptide hormones

18-2 Hormones

- Secretion and Distribution of Hormones
 - \circ Free Hormones
 - Remain functional for less than 1 hour
 - 1. Diffuse out of bloodstream and bind to receptors on target cells
 - 2. Are broken down and absorbed by cells of liver or kidneys
 - 3. Are broken down by enzymes in plasma or interstitial fluids

- Secretion and Distribution of Hormones
 - Thyroid and Steroid Hormones

- Remain in circulation much longer because most are "bound"
- Enter bloodstream
 - More than 99 percent become attached to special transport proteins
 - Bloodstream contains substantial reserve of bound hormones

- Mechanisms of Hormone Action
 - o Hormone Receptor
 - Is a protein molecule to which a particular molecule binds strongly
 - Responds to several different hormones
 - Different tissues have different combinations of receptors
 - Presence or absence of specific receptor determines hormonal sensitivity

18-2 Hormones

- Hormones and Plasma Membrane Receptors
 - Catecholamines and Peptide Hormones
 - Are not lipid soluble
 - Unable to penetrate plasma membrane
 - Bind to receptor proteins at *outer* surface of plasma membrane (extracellular receptors)
 - o Eicosanoids
 - Are lipid soluble
 - Diffuse across plasma membrane to reach receptor proteins on *inner* surface of plasma membrane (intracellular receptors)

18-2 Hormones

- Hormones and Plasma Membrane Receptors
 - First and Second Messengers
 - Bind to receptors in plasma membrane
 - Cannot have direct effect on activities inside target cell
 - Use intracellular intermediary to exert effects

18-2 Hormones

- First Messenger
 - Leads to **second messenger**
 - May act as enzyme activator, inhibitor, or cofactor
 - Results in change in rates of metabolic reactions

18-2 Hormones

• Important Second Messengers

- 1. Cyclic-AMP (cAMP)
 - Derivative of ATP
- 2. Cyclic-GMP (cGMP)
 - Derivative of GTP
- 3. Calcium ions

- The Process of Amplification
 - Is the binding of a small number of hormone molecules to membrane receptors
 - o Leads to thousands of second messengers in cell
 - o Magnifies effect of hormone on target cell

18-2 Hormones

- Down-regulation
 - Presence of a hormone triggers decrease in number of hormone receptors
 - When levels of particular hormone are high, cells become *less* sensitive to it
- Up-regulation
 - Absence of a hormone triggers increase in number of hormone receptors
 - When levels of particular hormone are low, cells become more sensitive to it

18-2 Hormones

- G Protein
 - Enzyme complex coupled to membrane receptor
 - o Involved in link between first messenger and second messenger
- G Proteins and cAMP
 - Adenylate cyclase is activated when hormone binds to receptor at membrane surface and changes concentration of second messenger cyclic-AMP (cAMP) within cell
 - Increased cAMP level accelerates metabolic activity within cell

- G Proteins and Calcium lons
 - Activated G proteins trigger:
 - Opening of calcium ion channels in membrane
 - Release of calcium ions from intracellular stores
 - G protein activates enzyme phospholipase C (PLC)
 - Enzyme triggers receptor cascade
 - Production of diacylglycerol (DAG) and inositol triphosphate (IP₃) from membrane phospholipids

- May further activate more calcium ion channels through protein kinase C (PKC)
- Calcium ions may activate calmodulin, which causes further cellular changes

- Hormones and Intracellular Receptors
 - Alter rate of DNA transcription in nucleus
 - Change patterns of protein synthesis
 - o Directly affect metabolic activity and structure of target cell
 - Include steroids and thyroid hormones

18-2 Hormones

- Control of Endocrine Activity by Endocrine Reflexes
 - Endocrine Reflexes
 - Functional counterparts of neural reflexes
 - In most cases, controlled by negative feedback mechanisms
 - Stimulus triggers production of hormone; the direct or indirect effects of the hormone reduce intensity of the stimulus

18-2 Hormones

- Endocrine Reflexes
 - Can be triggered by:
 - 1. Humoral stimuli
 - Changes in composition of extracellular fluid
 - 2. Hormonal stimuli
 - o Arrival or removal of specific hormone
 - 3. Neural stimuli
 - o Arrival of neurotransmitters at neuroglandular junctions

18-2 Hormones

- Endocrine Reflexes
 - Simple Endocrine Reflex
 - Involves only one hormone
 - Controls hormone secretion by the heart, pancreas, parathyroid gland, and digestive tract
 - Complex Endocrine Reflex
 - One or more intermediary steps
 - Two or more hormones
 - The hypothalamus provides highest level of endocrine control

- Neuroendocrine Reflexes
 - Pathways include both neural and endocrine components
- Complex Commands
 - Issued by changing:
 - Amount of hormone secreted
 - Pattern of hormone release
 - o Hypothalamic and pituitary hormones released in sudden bursts
 - Frequency changes response of target cells

18-3 The Pituitary Gland

- The Pituitary Gland
 - Also called hypophysis
 - Lies within sella turcica
 - Sellar diaphragm
 - A dural sheet that locks pituitary in position
 - o Isolates it from cranial cavity
 - Hangs inferior to hypothalamus
 - Connected by infundibulum

18-3 The Pituitary Gland

- The Pituitary Gland
 - Releases nine important peptide hormones
 - Hormones bind to membrane receptors
 - Use cAMP as second messenger

18-3 The Pituitary Gland

- The Anterior Lobe of the Pituitary Gland
 - Also called adenohypophysis
 - Hormones "turn on" endocrine glands or support other organs
 - Has three regions
 - 1. Pars distalis
 - 2. Pars tuberalis
 - 3. Pars intermedia

18-3 The Pituitary Gland

- The Hypophyseal Portal System
 - Median eminence
 - Swelling near attachment of infundibulum
 - Where hypothalamic neurons release regulatory factors

 Into interstitial fluids
 - Through fenestrated capillaries

18-3 The Pituitary Gland

Portal Vessels

- o Blood vessels link two capillary networks
- Entire complex is **portal system**
 - Ensures that regulatory factors reach intended target cells before entering general circulation

18-3 The Pituitary Gland

- Hypothalamic Control of the Anterior Lobe
 - Two classes of hypothalamic regulatory hormones
 - 1. Releasing hormones (RH)
 - Stimulate synthesis and secretion of one or more hormones at anterior lobe
 - 2. Inhibiting hormones (IH)
 - Prevent synthesis and secretion of hormones from the anterior lobe
 - Rate of secretion is controlled by negative feedback

18-3 The Pituitary Gland

- The **Posterior Lobe** of the Pituitary Gland
 - Also called **neurohypophysis**
 - Contains unmyelinated axons of hypothalamic neurons
 - Supraoptic and paraventricular nuclei manufacture:
 - Antidiuretic hormone (ADH)
 - o Oxytocin (OXT)

18-4 The Thyroid Gland

- The Thyroid Gland
 - o Lies inferior to thyroid cartilage of larynx
 - Consists of two lobes connected by narrow isthmus
 - Thyroid follicles
 - Hollow spheres lined by cuboidal epithelium
 - Cells surround follicle cavity that contains viscous colloid
 - Surrounded by network of capillaries that:
 - Deliver nutrients and regulatory hormones
 - Accept secretory products and metabolic wastes

18-4 The Thyroid Gland

- Thyroglobulin (Globular Protein)
 - Synthesized by follicle cells
 - Secreted into colloid of thyroid follicles
 - Molecules contain the amino acid tyrosine
- Thyroxine (T₄)

- Also called *tetraiodothyronine*
- o Contains four iodide ions
- Triiodothyronine (T₃)
 - Contains three iodide ions

18-4 The Thyroid Gland

- Thyroid-binding Globulins (TBGs)
 - $\circ~$ Plasma proteins that bind about 75 percent of T_4 and 70 percent of T_3 entering the bloodstream
- Transthyretin (*thyroid-binding prealbumin TBPA*) and *albumin* Bind most of the remaining thyroid hormones
- About 0.3 percent of T₃ and 0.03 percent of T₄ are unbound

18-4 The Thyroid Gland

- Thyroid-Stimulating Hormone (TSH)
 - Absence causes thyroid follicles to become inactive
 Neither synthesis nor secretion occurs
 - Binds to membrane receptors
 - Activates key enzymes in thyroid hormone production

18-4 The Thyroid Gland

- Functions of Thyroid Hormones
 - Thyroid Hormones
 - Enter target cells by transport system
 - Affect most cells in body
 - Bind to receptors in:
 - 1. Cytoplasm
 - 2. Surfaces of mitochondria
 - 3. Nucleus
 - In children, essential to normal development of:
 - Skeletal, muscular, and nervous systems

18-4 The Thyroid Gland

- Calorigenic Effect
 - Cell consumes more energy resulting in increased heat generation
 - Is responsible for strong, immediate, and short-lived increase in rate of cellular metabolism

18-4 The Thyroid Gland

- Effects of Thyroid Hormones on Peripheral Tissues
 - 1. Elevates rates of oxygen consumption and energy consumption; in

children, may cause a rise in body temperature

- 2. Increases heart rate and force of contraction; generally results in a rise in blood pressure
- 3. Increases sensitivity to sympathetic stimulation
- 4. Maintains normal sensitivity of respiratory centers to changes in oxygen and carbon dioxide concentrations
- 5. Stimulates red blood cell formation and thus enhances oxygen delivery
- 6. Stimulates activity in other endocrine tissues
- 7. Accelerates turnover of minerals in bone

18-4 The Thyroid Gland

- The C Cells of the Thyroid Gland and Calcitonin
 - C (clear) cells also called parafollicular cells
 - Produce calcitonin (CT)
 - Helps regulate concentrations of Ca²⁺ in body fluids
 - 1. Inhibits osteoclasts, which slows the rate of Ca^{2+} release from bone
 - 2. Stimulates Ca^{2+} excretion by the kidneys

18-5 Parathyroid Glands

- Four Parathyroid Glands
 - Embedded in the posterior surface of the thyroid gland
 - Altogether, the four glands weigh 1.6 g
- Parathyroid Hormone (PTH) or parathormone
 - Produced by parathyroid (chief) cells in response to low concentrations of Ca²⁺
 - Antagonist for calcitonin

18-5 Parathyroid Glands

- Three Effects of PTH
 - 1. It stimulates osteoclasts and inhibits osteoblasts
 - Accelerates mineral turnover and releases Ca²⁺ from bone
 - Reduces rate of calcium deposition in bone
 - 2. It enhances reabsorption of Ca²⁺ at kidneys, reducing urinary losses
 - 3. It stimulates formation and secretion of *calcitriol* by the kidneys
 - Effects complement or enhance PTH
 - Also enhances Ca²⁺, PO₄³⁻ absorption by digestive tract

18-6 Adrenal Glands

The Adrenal Glands

- Lie along superior border of each kidney
- Subdivided into:
 - Superficial adrenal cortex
 - o Stores lipids, especially cholesterol and fatty acids

- Manufactures steroid hormones (corticosteroids)
- Inner adrenal medulla
 - Secretory activities controlled by sympathetic division of ANS
 - Produces epinephrine (adrenaline) and norepinephrine
 - Metabolic changes persist for several minutes

18-6 Adrenal Glands

- Adrenal Cortex
 - Subdivided into three regions
 - 1. Zona glomerulosa
 - 2. Zona fasciculata
 - 3. Zona reticularis

18-6 Adrenal Glands

- Zona Glomerulosa
 - Outer region of adrenal cortex
 - o Produces mineralocorticoids
 - For example, aldosterone

18-6 Adrenal Glands

- Aldosterone
 - Stimulates conservation of sodium ions and elimination of potassium ions
 - o Increases sensitivity of salt receptors in taste buds
 - Secretion responds to:
 - Drop in blood Na⁺, blood volume, or blood pressure
 - Rise in blood K⁺ concentration

18-6 Adrenal Glands

• Zona Fasciculata

- Produces glucocorticoids
- For example, cortisol (hydrocortisone) with corticosterone
 Liver converts cortisol to cortisone
- Secretion regulated by negative feedback
- Has inhibitory effect on production of:
 - Corticotropin-releasing hormone (CRH) in hypothalamus
 - ACTH in adenohypophysis

18-6 Adrenal Glands

- Glucocorticoids
 - Accelerate glucose synthesis and glycogen formation
 - Show anti-inflammatory effects
 - Inhibit activities of white blood cells and other components of immune

system

18-6 Adrenal Glands

• Zona Reticularis

- Network of endocrine cells
- Forms narrow band bordering each adrenal medulla
- Produces androgens under stimulation by ACTH

18-6 Adrenal Glands

- The Adrenal Medulla
 - Contains two types of secretory cells
 - One produces epinephrine (adrenaline)
 - o 75 to 80 percent of medullary secretions
 - The other produces **norepinephrine** (noradrenaline)
 - o 20 to 25 percent of medullary secretions

18-6 Adrenal Glands

- Epinephrine and Norepinephrine
 - Activation of the adrenal medullae has the following effects:
 - In skeletal muscles, epinephrine and norepinephrine trigger mobilization of glycogen reserves
 - And accelerate the breakdown of glucose to provide ATP
 - This combination increases both muscular strength and endurance
 - In adipose tissue, stored fats are broken down into fatty acids
 - Which are released into the bloodstream for other tissues to use for ATP production

18-6 Adrenal Glands

- Epinephrine and Norepinephrine
 - Activation of the adrenal medullae has the following effects:
 - In the liver, glycogen molecules are broken down
 - The resulting glucose molecules are released into the bloodstream
 - Primarily for use by neural tissue, which cannot shift to fatty acid metabolism
 - In the heart, the stimulation of beta 1 receptors triggers an increase in the rate and force of cardiac muscle contraction

18-7 Pineal Gland

- The Pineal Gland
 - Lies in posterior portion of roof of third ventricle
 - Contains **pinealocytes**
 - Synthesize hormone melatonin

18-7 Pineal Gland

- Functions of Melatonin:
 - Inhibits reproductive functions
 - Protects against damage by free radicals
 - o Influences circadian rhythms

18-8 Pancreas

- The Pancreas
 - Lies between:
 - Inferior border of stomach
 - And proximal portion of small intestine
 - Contains exocrine and endocrine cells

18-8 Pancreas

• Exocrine Pancreas

- Consists of clusters of gland cells called *pancreatic acini* and their attached ducts
- Takes up roughly 99 percent of pancreatic volume
- o Gland and duct cells secrete alkaline, enzyme-rich fluid
 - That reaches the lumen of the digestive tract through a network of secretory ducts

18-8 Pancreas

- Endocrine Pancreas
 - Consists of cells that form clusters known as pancreatic islets, or islets of Langerhans
 - 1. Alpha cells produce glucagon
 - 2. Beta cells produce insulin
 - 3. Delta cells produce peptide hormone identical to GH–IH
 - 4. F cells secrete pancreatic polypeptide (PP)

18-8 Pancreas

- Blood Glucose Levels
 - When levels rise:
 - Beta cells secrete insulin, stimulating transport of glucose across plasma membranes
 - When levels decline:
 - Alpha cells release glucagon, stimulating glucose release by liver

18-8 Pancreas

• Insulin

- o Is a peptide hormone released by beta cells
- o Affects target cells
 - Accelerates glucose uptake
 - Accelerates glucose utilization and enhances ATP production
 - Stimulates glycogen formation
 - Stimulates amino acid absorption and protein synthesis
 - Stimulates triglyceride formation in adipose tissue

18-8 Pancreas

- Glucagon
 - Released by alpha cells
 - Mobilizes energy reserves
 - Affects target cells
 - Stimulates breakdown of glycogen in skeletal muscle and liver cells
 - Stimulates breakdown of triglycerides in adipose tissue
 - Stimulates production of glucose in liver (gluconeogenesis)

18-8 Pancreas

• Diabetes Mellitus

- Is characterized by glucose concentrations high enough to overwhelm the reabsorption capabilities of the kidneys
 - Hyperglycemia = abnormally high glucose levels in the blood in general
 - Glucose appears in the urine, and urine volume generally becomes excessive (polyuria)

18-8 Pancreas

- Diabetes Mellitus
 - Type 1 (insulin dependent) diabetes
 - Is characterized by inadequate insulin production by the pancreatic beta cells
 - Persons with type 1 diabetes require insulin to live and usually require multiple injections daily, or continuous infusion through an insulin pump or other device
 - This form of diabetes accounts for only around 5–10 percent of cases; it often develops in childhood

18-8 Pancreas

- Diabetes Mellitus
 - Type 2 (non-insulin dependent) diabetes
 - Is the most common form of diabetes mellitus
 - Most people with this form of diabetes produce normal amounts of insulin, at least initially, but their tissues do not respond properly, a

condition known as insulin resistance

- Type 2 diabetes is associated with obesity
 - Weight loss through diet and exercise can be an effective treatment

18-8 Pancreas

- Diabetes Mellitus
 - Complications of untreated, or poorly managed diabetes mellitus include:
 - Kidney degeneration
 - Retinal damage
 - Early heart attacks
 - Peripheral nerve problems
 - Peripheral tissue damage

18-8 Pancreas

- Kidney Degeneration
 - Diabetic nephropathy
 - Degenerative changes in the kidneys can lead to kidney failure
- Retinal Damage
 - Diabetic retinopathy
 - The proliferation of capillaries and hemorrhaging at the retina may cause partial or complete blindness

18-8 Pancreas

- Early Heart Attacks
 - Degenerative blockages in cardiac circulation can lead to early heart attacks
 - For a given age group, heart attacks are three to five times more likely in diabetic individuals than in nondiabetic people
- Peripheral Nerve Problems
 - Abnormal blood flow to neural tissues is probably responsible for a variety of neural problems with peripheral nerves, including abnormal autonomic function
 - These disorders are collectively termed diabetic neuropathy

18-8 Pancreas

- Peripheral Tissue Damage
 - Blood flow to the distal portions of the limbs is reduced, and peripheral tissues may suffer as a result
 - For example, a reduction in blood flow to the feet can lead to tissue death, ulceration, infection, and loss of toes or a major portion of one or both feet

18-9 Endocrine Tissues of Other Systems

- Many Organs of Other Body Systems Have Secondary Endocrine Functions
 - Intestines (digestive system)
 - Kidneys (urinary system)
 - Heart (cardiovascular system)
 - o Thymus (lymphatic system and immunity)
 - Gonads (reproductive system)

18-9 Endocrine Tissues of Other Systems

- The Intestines
 - o Produce hormones important to coordination of digestive activities
- The Kidneys
 - Produce the hormones calcitriol and erythropoietin (EPO)
 - Produce the enzyme **renin**

18-9 Endocrine Tissues of Other Systems

- The Heart
 - Produces **natriuretic peptides** (*ANP* and *BNP*)
 - When blood volume becomes excessive
 - Action opposes angiotensin II
 - Resulting in reduction in blood volume and blood pressure

18-9 Endocrine Tissues of Other Systems

- The Thymus
 - Produces thymosins (blend of thymic hormones)
 - That help develop and maintain normal immune defenses

18-9 Endocrine Tissues of Other Systems

- The Gonads
 - o **Testes**
 - Produce androgens in interstitial cells
 - **Testosterone** is the most important male hormone
 - Secrete inhibin in nurse cells
 - Support differentiation and physical maturation of sperm

18-9 Endocrine Tissues of Other Systems

- The Gonads
 - Ovaries
 - Produce estrogens
 - Principal estrogen is estradiol
 - After ovulation, follicle cells:

- o Reorganize into corpus luteum
- o Release estrogens and progestins, especially progesterone

18-9 Endocrine Tissues of Other Systems

- Adipose Tissue Secretions
 - o Leptin
 - Feedback control for appetite
 - Controls normal levels of GnRH, gonadotropin synthesis

18-10 Hormone Interactions

- Hormones Interact to Produce Coordinated Physiological Responses
 - When a cell receives instructions from two hormones at the same time, four outcomes are possible
 - 1. Antagonistic effects opposing
 - 2. Synergistic effects additive
 - 3. **Permissive effects** one hormone is necessary for another to produce effect
 - 4. **Integrative effects** hormones produce different and complementary results

18-10 Hormone Interactions

- Hormones Important to Growth
 - o Growth hormone (GH)
 - o Thyroid hormones
 - o Insulin
 - PTH and calcitriol
 - o Reproductive hormones

18-10 Hormone Interactions

- Growth Hormone (GH)
 - In children:
 - Supports muscular and skeletal development
 - o In adults:
 - Maintains normal blood glucose concentrations
 - Mobilizes lipid reserves

18-10 Hormone Interactions

- Thyroid Hormones
 - o If absent during fetal development or for first year:
 - Nervous system fails to develop normally
 - Mental retardation results
 - If T₄ concentrations decline before puberty:

Normal skeletal development will not continue

18-10 Hormone Interactions

- Insulin
 - Allows passage of glucose and amino acids across plasma membranes
- Parathyroid Hormone (PTH) and Calcitriol
 - Promote absorption of calcium salts for deposition in bone
 - o Inadequate levels cause weak and flexible bones

18-10 Hormone Interactions

- Reproductive Hormones
 - Androgens in males, estrogens in females
 - Stimulate cell growth and differentiation in target tissues
 - Produce gender-related differences in:
 - Skeletal proportions
 - Secondary sex characteristics

18-10 Hormone Interactions

- The Hormonal Responses to Stress
 - General Adaptation Syndrome (GAS)
 - Also called stress response
 - How body responds to stress-causing factors
 - Is divided into three phases
 - 1. Alarm phase
 - 2. Resistance phase
 - 3. Exhaustion phase

18-10 Hormone Interactions

- The Effects of Hormones on Behavior
 - Hormone changes
 - Can alter intellectual capabilities, memory, learning, and emotional states
 - Affect behavior when endocrine glands are oversecreting or undersecreting

18-10 Hormone Interactions

- Aging and Hormone Production
 - Causes few functional changes
 - Decline in concentration of:
 - Growth hormone
 - Reproductive hormones