Chapter 16

The Autonomic Nervous System and Higher-Order Functions

An Introduction to the ANS and Higher-Order Functions

- Somatic Nervous System (SNS)
 - Operates under conscious control
 - Seldom affects long-term survival
 - SNS controls skeletal muscles
- Autonomic Nervous System (ANS)
 - Operates without conscious instruction
 - ANS controls visceral effectors
 - Coordinates system functions
 - Cardiovascular, respiratory, digestive, urinary, reproductive

16-1 Autonomic Nervous System

- Organization of the ANS
 - Integrative centers
 - For autonomic activity in hypothalamus
 - Neurons comparable to upper motor neurons in SNS

16-1 Autonomic Nervous System

- Organization of the ANS
 - Visceral motor neurons
 - In brain stem and spinal cord, are known as preganglionic neurons
 - Preganglionic fibers
 - Axons of preganglionic neurons
 - Leave CNS and synapse on ganglionic neurons

16-1 Autonomic Nervous System

- Visceral Motor Neurons
 - Autonomic ganglia
 - Contain many ganglionic neurons
 - Ganglionic neurons innervate visceral effectors
 - Such as cardiac muscle, smooth muscle, glands, and adipose tissue
 - Postganglionic fibers
 - Axons of ganglionic neurons

16-1 Divisions of the ANS

- The Autonomic Nervous System
 - Operates largely outside our awareness
 - Has two divisions
 - 1. Sympathetic division
 - o Increases alertness, metabolic rate, and muscular abilities
 - 2. Parasympathetic division
 - o Reduces metabolic rate and promotes digestion

16-1 Divisions of the ANS

- Sympathetic Division
 - Kicks in only during exertion, stress, or emergency
 - o "Fight or flight"
- Parasympathetic Division
 - Controls during resting conditions
 - "Rest and digest"

16-1 Divisions of the ANS

- Sympathetic and Parasympathetic Division
 - 1. Most often, these two divisions have opposing effects
 - If the sympathetic division causes excitation, the parasympathetic causes inhibition
 - 2. The two divisions may also work independently
 - Only one division innervates some structures
 - 3. The two divisions may work together, with each controlling one stage of a complex process

16-1 Divisions of the ANS

- Sympathetic Division
 - Preganglionic fibers (thoracic and superior lumbar; thoracolumbar) synapse in ganglia near spinal cord
 - Preganglionic fibers are short
 - Postganglionic fibers are long
 - Prepares body for crisis, producing a "fight or flight" response
 - Stimulates tissue metabolism
 - Increases alertness

16-1 Divisions of the ANS

- Seven Responses to Increased Sympathetic Activity
 - 1. Heightened mental alertness
 - 2. Increased metabolic rate
 - Reduced digestive and urinary functions

- 4. Energy reserves activated
- 5. Increased respiratory rate and respiratory passageways dilate
- 6. Increased heart rate and blood pressure
- 7. Sweat glands activated

16-1 Divisions of the ANS

- Parasympathetic Division
 - Preganglionic fibers originate in brain stem and sacral segments of spinal cord; craniosacral
 - Synapse in ganglia close to (or within) target organs
 - Preganglionic fibers are long
 - Postganglionic fibers are short
 - Parasympathetic division stimulates visceral activity
 - Conserves energy and promotes sedentary activities

0

16-1 Divisions of the ANS

- Five Responses to Increased Parasympathetic Activity
 - 1. Decreased metabolic rate
 - 2. Decreased heart rate and blood pressure
 - 3. Increased secretion by salivary and digestive glands
 - 4. Increased motility and blood flow in digestive tract
 - 5. Urination and defecation stimulation

16-1 Divisions of the ANS

- Enteric Nervous System (ENS)
 - Third division of ANS
 - Extensive network in digestive tract walls
 - Complex visceral reflexes coordinated locally
 - Roughly 100 million neurons
 - All neurotransmitters are found in the brain

16-2 The Sympathetic Division

- The Sympathetic Division
 - Preganglionic neurons located between segments T₁ and L₂ of spinal cord
 - Ganglionic neurons in ganglia near vertebral column
 - Cell bodies of preganglionic neurons in lateral gray horns
 - Axons enter ventral roots of segments

- Ganglionic Neurons
 - Occur in three locations

- 1. Sympathetic chain ganglia
- 2. Collateral ganglia
- 3. Adrenal medullae

- Sympathetic Chain Ganglia
 - On both sides of vertebral column
 - Control effectors:
 - In body wall
 - Inside thoracic cavity
 - In head
 - In limbs

16-2 The Sympathetic Division

- Collateral Ganglia
 - Are anterior to vertebral bodies
 - Contain ganglionic neurons that innervate tissues and organs in abdominopelvic cavity

16-2 The Sympathetic Division

- Adrenal Medullae (Suprarenal Medullae)
 - Very short axons
 - When stimulated, release neurotransmitters into bloodstream (not at synapse)
 - Function as hormones to affect target cells throughout body

16-2 The Sympathetic Division

- Fibers in Sympathetic Division
 - o Preganglionic fibers
 - Are relatively short
 - Ganglia located near spinal cord
 - Postganglionic fibers
 - Are relatively long, except at adrenal medullae

- Organization and Anatomy of the Sympathetic Division
 - Ventral roots of spinal segments T₁–L₂ contain sympathetic preganglionic fibers
 - Give rise to myelinated white ramus
 - Carry myelinated preganglionic fibers into sympathetic chain ganglion
 - May synapse at collateral ganglia or in adrenal medullae

- Sympathetic Chain Ganglia
 - Preganglionic fibers
 - One preganglionic fiber synapses on many ganglionic neurons
 - Fibers interconnect sympathetic chain ganglia
 - Each ganglion innervates particular body segment(s)

16-2 The Sympathetic Division

- Sympathetic Chain Ganglia
 - Postganglionic Fibers
 - Paths of unmyelinated postganglionic fibers depend on targets

16-2 The Sympathetic Division

- Sympathetic Chain Ganglia
 - Postganglionic fibers control visceral effectors
 - In body wall, head, neck, or limbs
 - Enter gray ramus
 - Return to spinal nerve for distribution
 - Postganglionic fibers innervate effectors
 - Sweat glands of skin
 - Smooth muscles in superficial blood vessels

16-2 The Sympathetic Division

- Sympathetic Chain Ganglia
 - Postganglionic fibers innervating structures in thoracic cavity form bundles
 - Sympathetic nerves

16-2 The Sympathetic Division

- Sympathetic Chain Ganglia
 - Each sympathetic chain ganglia contains:
 - 3 cervical ganglia
 - 10–12 thoracic ganglia
 - 4–5 lumbar ganglia
 - 4–5 sacral ganglia
 - 1 coccygeal ganglion

- Sympathetic Chain Ganglia
 - Preganglionic neurons
 - Limited to spinal cord segments T₁-L₂
 - White rami (myelinated preganglionic fibers)

- Innervate neurons in:
 - Cervical, inferior lumbar, and sacral sympathetic chain ganglia

- Sympathetic Chain Ganglia
 - Chain ganglia provide postganglionic fibers
 - Through gray rami (unmyelinated postganglionic fibers)
 - To cervical, lumbar, and sacral spinal nerves

16-2 The Sympathetic Division

- Sympathetic Chain Ganglia
 - Only spinal nerves T₁−L₂ have white rami
 - Every spinal nerve has gray ramus
 - That carries sympathetic postganglionic fibers for distribution in body wall

16-2 The Sympathetic Division

- Sympathetic Chain Ganglia
 - Postganglionic sympathetic fibers
 - In head and neck leave superior cervical sympathetic ganglia
 - Supply the regions and structures innervated by cranial nerves III, VII, IX, X

16-2 The Sympathetic Division

- Collateral Ganglia
 - Receive sympathetic innervation via sympathetic preganglionic fibers
 - Splanchnic nerves
 - Formed by preganglionic fibers that innervate collateral ganglia
 - In dorsal wall of abdominal cavity
 - Originate as paired ganglia (left and right)
 - Usually fuse together in adults

- Collateral Ganglia
 - Postganglionic fibers
 - Leave collateral ganglia
 - Extend throughout abdominopelvic cavity
 - Innervate variety of visceral tissues and organs
 - Reduction of blood flow and energy by organs not vital to shortterm survival
 - Release of stored energy reserves

- Collateral Ganglia
 - Preganglionic fibers from seven inferior thoracic segments
 - End at celiac ganglion or superior mesenteric ganglion
 - Ganglia embedded in network of autonomic nerves
 - Preganglionic fibers from lumbar segments
 - Form splanchnic nerves
 - End at inferior mesenteric ganglion

16-2 The Sympathetic Division

- Collateral Ganglia
 - Celiac ganglion
 - Pair of interconnected masses of gray matter
 - May form single mass or many interwoven masses
 - Postganglionic fibers innervate stomach, liver, gallbladder, pancreas, and spleen

16-2 The Sympathetic Division

- Collateral Ganglia
 - Superior mesenteric ganglion
 - Near base of superior mesenteric artery
 - Postganglionic fibers innervate small intestine and proximal 2/3 of large intestine

16-2 The Sympathetic Division

- Collateral Ganglia
 - Inferior mesenteric ganglion
 - Near base of inferior mesenteric artery
 - Postganglionic fibers provide sympathetic innervation to portions of:
 - o Large intestine
 - Kidney
 - Urinary bladder
 - Sex organs

- Adrenal Medullae
 - Preganglionic fibers entering adrenal gland proceed to center (adrenal medulla)
 - Modified sympathetic ganglion
 - Preganglionic fibers synapse on neuroendocrine cells
 - Specialized neurons secrete hormones into bloodstream

- Adrenal Medullae
 - Neuroendocrine cells
 - Secrete neurotransmitters epinephrine (E) and norepinephrine (NE)
 - Epinephrine
 - Also called adrenaline
 - Is 75–80 percent of secretory output
 - Remaining is norepinephrine (NE)
 - Noradrenaline

16-2 The Sympathetic Division

- Adrenal Medullae
 - Bloodstream carries neurotransmitters through body
 - Causing changes in metabolic activities of different cells including cells not innervated by sympathetic postganglionic fibers
 - Effects last longer
 - Hormones continue to diffuse out of bloodstream

16-2 The Sympathetic Division

- Sympathetic Activation
 - Change activities of tissues and organs by:
 - Releasing NE at peripheral synapses
 - Target specific effectors, smooth muscle fibers in blood vessels of skin
 - Are activated in reflexes
 - Do not involve other visceral effectors

16-2 The Sympathetic Division

- Sympathetic Activation
 - Changes activities of tissues and organs by:
 - Distributing E and NE throughout body in bloodstream
 - Entire division responds (sympathetic activation)
 - Are controlled by sympathetic centers in hypothalamus
 - o Effects are not limited to peripheral tissues
 - Alters CNS activity

- Changes Caused by Sympathetic Activation
 - Increased alertness
 - Feelings of energy and euphoria
 - Change in breathing
 - Elevation in muscle tone

Mobilization of energy reserves

16-3 Various Sympathetic Neurotransmitters

- Stimulation of Sympathetic Preganglionic Neurons
 - Releases ACh at synapses with ganglionic neurons
 - o Excitatory effect on ganglionic neurons
- Ganglionic Neurons
 - Release neurotransmitters at specific target organs

16-3 Various Sympathetic Neurotransmitters

- Ganglionic Neurons
 - Axon terminals
 - Form branching networks of telodendria instead of synaptic terminals
 - Telodendria form sympathetic varicosities
 - Resemble string of pearls
 - Swollen segment packed with neurotransmitter vesicles
 - o Pass along or near surface of effector cells
 - No specialized postsynaptic membranes
 - Membrane receptors on surfaces of target cells

16-3 Various Sympathetic Neurotransmitters

- Ganglionic Neurons
 - Axon terminals
 - Release NE at most varicosities
 - Called adrenergic neuron
 - Some ganglionic neurons release ACh instead
 - Are located in body wall, skin, brain, and skeletal muscles
 - Called cholinergic neurons

16-3 Various Sympathetic Neurotransmitters

- Sympathetic Stimulation and the Release of NE and E
 - Primarily from interactions of NE and E with two types of adrenergic membrane receptors
 - 1. **Alpha receptors** (NE more potent)
 - 2. Beta receptors
 - Activates enzymes on inside of cell membrane via G proteins

16-3 Various Sympathetic Neurotransmitters

- Sympathetic Stimulation and the Release of NE and E
 - \circ Alpha-1 (α_1)
 - More common type of alpha receptor
 - Releases intracellular calcium ions from reserves in endoplasmic

- reticulum
- Has excitatory effect on target cell

16-3 Various Sympathetic Neurotransmitters

- Sympathetic Stimulation and the Release of NE and E
 - Alpha-2 (α₂)
 - Lowers cAMP levels in cytoplasm
 - Has inhibitory effect on the cell
 - Helps coordinate sympathetic and parasympathetic activities

16-3 Various Sympathetic Neurotransmitters

- Sympathetic Stimulation and the Release of NE and E
 - Beta (β) receptors
 - Affect membranes in many organs (skeletal muscles, lungs, heart, and liver)
 - Trigger metabolic changes in target cell
 - Stimulation increases intracellular cAMP levels

16-3 Various Sympathetic Neurotransmitters

- Three Main Types of Beta Receptors
 - 1. Beta-1 (β₁)
 - Increases metabolic activity
 - 2. Beta-2 (β₂)
 - Triggers relaxation of smooth muscles along respiratory tract
 - 3. Beta-3 (β₃)
 - Leads to *lipolysis*, the breakdown of triglycerides in adipocytes

16-3 Various Sympathetic Neurotransmitters

- Sympathetic Stimulation and the Release of ACh and NO
 - Cholinergic (ACh) sympathetic terminals
 - Innervate sweat glands of skin and blood vessels of skeletal muscles and brain
 - Stimulate sweat gland secretion and dilate blood vessels

16-3 Various Sympathetic Neurotransmitters

- Sympathetic Stimulation and the Release of ACh and NO
 - Nitroxidergic synapses
 - Release *nitric oxide* (NO) as neurotransmitter
 - Neurons innervate smooth muscles in walls of blood vessels in skeletal muscles and the brain
 - Produce vasodilation and increased blood flow

16-4 The Parasympathetic Division

- Autonomic Nuclei
 - o Are contained in the mesencephalon, pons, and medulla oblongata
 - Associated with cranial nerves III, VII, IX, X
 - In lateral gray horns of spinal segments S₂–S₄

16-4 The Parasympathetic Division

- Ganglionic Neurons in Peripheral Ganglia
 - Terminal ganglion
 - Near target organ
 - Usually paired
 - Intramural ganglion
 - Embedded in tissues of target organ
 - Interconnected masses
 - Clusters of ganglion cells

16-4 The Parasympathetic Division

- Organization and Anatomy of the Parasympathetic Division
 - Parasympathetic preganglionic fibers leave brain as components of cranial nerves
 - III (oculomotor)
 - VII (facial)
 - IX (glossopharyngeal)
 - X (vagus)
 - o Parasympathetic preganglionic fibers leave spinal cord at sacral level

16-4 The Parasympathetic Division

- Oculomotor, Facial, and Glossopharyngeal Nerves
 - Control visceral structures in head
 - Synapse in ciliary, pterygopalatine, submandibular, and otic ganglia
 - Short postganglionic fibers continue to their peripheral targets

16-4 The Parasympathetic Division

- Vagus Nerve
 - o Provides preganglionic parasympathetic innervation to structures in:
 - Neck
 - Thoracic and abdominopelvic cavities as distant as a distal portion of large intestine
 - Provides 75 percent of all parasympathetic outflow
 - Branches intermingle with fibers of sympathetic division

16-4 The Parasympathetic Division

- Sacral Segments of Spinal Cord
 - Preganglionic fibers carry sacral parasympathetic output
 - Do not join ventral roots of spinal nerves, instead form pelvic nerves
 - Pelvic nerves innervate intramural ganglia in walls of kidneys, urinary bladder, portions of large intestine, and the sex organs

16-4 The Parasympathetic Division

- Parasympathetic Activation
 - Centers on relaxation, food processing, and energy absorption
 - Localized effects, last a few seconds at most

16-4 The Parasympathetic Division

- Major Effects of Parasympathetic Division
 - Constriction of the pupils
 - To restrict the amount of light that enters the eyes
 - And focusing of the lenses of the eyes on nearby objects
 - Secretion by digestive glands
 - Including salivary glands, gastric glands, duodenal glands, intestinal glands, the pancreas (exocrine and endocrine), and the liver

16-4 The Parasympathetic Division

- Major Effects of Parasympathetic Division
 - Secretion of hormones
 - That promote the absorption and utilization of nutrients by peripheral cells
 - Changes in blood flow and glandular activity
 - Associated with sexual arousal
 - Increase in smooth muscle activity
 - Along the digestive tract

16-4 The Parasympathetic Division

- Major Effects of Parasympathetic Division
 - Stimulation and coordination of defecation
 - Contraction of the urinary bladder during urination
 - Constriction of the respiratory passageways
 - Reduction in heart rate and in the force of contraction

16-5 Parasympathetic Neurons Release ACh

- Neuromuscular and Neuroglandular Junctions
 - All release ACh as neurotransmitter

- Small, with narrow synaptic clefts
- Effects of stimulation are short lived
 - Inactivated by acetylcholinesterase (AChE) at synapse
 - ACh is also inactivated by tissue cholinesterase in surrounding tissues

16-5 Parasympathetic Neurons Release ACh

- Membrane Receptors and Responses
 - Nicotinic receptors
 - On surfaces of ganglion cells (sympathetic and parasympathetic)
 - Exposure to ACh causes excitation of ganglionic neuron or muscle fiber

16-5 Parasympathetic Neurons Release ACh

- Membrane Receptors and Responses
 - Muscarinic receptors
 - At cholinergic neuromuscular or neuroglandular junctions (parasympathetic)
 - At few cholinergic junctions (sympathetic)
 - G proteins
 - o Effects are longer lasting than nicotinic receptors
 - Response reflects activation or inactivation of specific enzymes
 - Can be excitatory or inhibitory

16-5 Parasympathetic Neurons Release ACh

- Dangerous Environmental Toxins
 - o Produce exaggerated, uncontrolled responses
 - Nicotine
 - Binds to nicotinic receptors
 - Targets autonomic ganglia and skeletal neuromuscular junctions
 - 50 mg ingested or absorbed through skin
 - Signs and symptoms:
 - Vomiting, diarrhea, high blood pressure, rapid heart rate, sweating, profuse salivation, convulsions
 - May result in coma or death

16-5 Parasympathetic Neurons Release ACh

- Dangerous Environmental Toxins
 - o Produce exaggerated, uncontrolled responses
 - Muscarine
 - Binds to muscarinic receptors
 - Targets parasympathetic neuromuscular or neuroglandular junctions
 - Signs and symptoms:
 - Salivation, nausea, vomiting, diarrhea, constriction of respiratory

16-6 Dual Innervation

- Sympathetic Division
 - Widespread impact
 - Reaches organs and tissues throughout body
- Parasympathetic Division
 - Innervates only specific visceral structures
- Sympathetic and Parasympathetic Division
 - Most vital organs receive instructions from both sympathetic and parasympathetic divisions
 - Two divisions commonly have opposing effects

16-6 Dual Innervation

- Anatomy of **Dual Innervation**
 - Parasympathetic postganglionic fibers accompany cranial nerves to peripheral destinations
 - Sympathetic innervation reaches same structures
 - By traveling directly from superior cervical ganglia of sympathetic chain

16-6 Dual Innervation

- Anatomy of Dual Innervation
 - Autonomic plexuses
 - Nerve networks in the thoracic and abdominopelvic cavities
 - Are formed by mingled sympathetic postganglionic fibers and parasympathetic preganglionic fibers
 - Travel with blood and lymphatic vessels that supply visceral organs

16-6 Dual Innervation

- Anatomy of Dual Innervation
 - Cardiac plexus
 - Pulmonary plexus
 - Esophageal plexus
 - Celiac plexus
 - Inferior mesenteric plexus
 - Hypogastric plexus

16-6 Dual Innervation

- Cardiac and Pulmonary Plexuses
 - Autonomic fibers entering thoracic cavity intersect
 - o Contain:
 - Sympathetic and parasympathetic fibers for heart and lungs

Parasympathetic ganglia whose output affects those organs

16-6 Dual Innervation

- Esophageal Plexus
 - Contains:
 - Descending branches of vagus nerves
 - Splanchnic nerves leaving sympathetic chain
 - Parasympathetic preganglionic fibers of vagus nerve enter abdominopelvic cavity with esophagus
 - Fibers enter celiac plexus (solar plexus)

16-6 Dual Innervation

- Celiac Plexus
 - Associated with smaller plexuses, such as inferior mesenteric plexus
 - Innervates viscera within abdominal cavity

16-6 Dual Innervation

- Hypogastric Plexus
 - Contains:
 - Parasympathetic outflow of pelvic nerves
 - Sympathetic postganglionic fibers from inferior mesenteric ganglion
 - Splanchnic nerves from sacral sympathetic chain
 - Innervates digestive, urinary, and reproductive organs of pelvic cavity

16-6 Dual Innervation

- Autonomic Tone
 - Is an important aspect of ANS function
 - If nerve is inactive under normal conditions, can only increase activity
 - If nerve maintains background level of activity, can increase or decrease activity

16-6 Dual Innervation

- Autonomic Tone
 - Autonomic motor neurons
 - Maintain resting level of spontaneous activity
 - Background level of activation determines autonomic tone

16-6 Dual Innervation

- Autonomic Tone
 - Significant where dual innervation occurs
 - Two divisions have opposing effects

More important when dual innervation does not occur

16-6 Dual Innervation

- The Heart Receives Dual Innervation
 - Two divisions have opposing effects on heart function
 - 1. Parasympathetic division
 - Acetylcholine released by postganglionic fibers slows heart rate
 - 2. Sympathetic division
 - o NE released by varicosities accelerates heart rate
 - Balance between two divisions
 - Autonomic tone is present
 - o Releases small amounts of both neurotransmitters continuously

16-6 Dual Innervation

- The Heart Receives Dual Innervation
 - Parasympathetic innervation dominates under resting conditions
 - Crisis accelerates heart rate by:
 - Stimulation of sympathetic innervation
 - Inhibition of parasympathetic innervation

16-6 Dual Innervation

- Autonomic Tone
 - Blood vessel dilates and blood flow increases
 - Blood vessel constricts and blood flow is reduced
 - Sympathetic postganglionic fibers release NE
 - Innervate smooth muscle cells in walls of peripheral vessels

16-6 Dual Innervation

- Autonomic Tone
 - Background sympathetic tone keeps muscles partially contracted
 - To increase blood flow:
 - Rate of NE release decreases
 - Sympathetic cholinergic fibers are stimulated
 - Smooth muscle cells relax
 - Vessels dilate and blood flow increases

16-7 Visceral Reflexes Regulate the ANS

- Somatic Motor Control
 - Centers in all portions of CNS
 - Lowest level regulatory control
 - Lower motor neurons of cranial and spinal visceral reflex arcs
 - Highest level

- Pyramidal motor neurons of primary motor cortex
- Operating with feedback from cerebellum and basal nuclei

16-7 Visceral Reflexes Regulate the ANS

- Visceral Reflexes
 - Provide automatic motor responses
 - Can be modified, facilitated, or inhibited by higher centers, especially hypothalamus
 - Visceral reflex arc
 - Receptor
 - Sensory neuron
 - Processing center (one or more interneurons)
 - All polysynaptic
 - Two visceral motor neurons

16-7 Visceral Reflexes Regulate the ANS

- Visceral Reflexes
 - Long reflexes
 - Autonomic equivalents of polysynaptic reflexes
 - Visceral sensory neurons deliver information to CNS along dorsal roots of spinal nerves
 - Within sensory branches of cranial nerves
 - Within autonomic nerves that innervate visceral effectors
 - ANS carries motor commands to visceral effectors
 - Coordinate activities of entire organ

16-7 Visceral Reflexes Regulate the ANS

- Visceral Reflexes
 - Short reflexes
 - Bypass CNS
 - Involve sensory neurons and interneurons located within autonomic ganglia
 - Interneurons synapse on ganglionic neurons
 - Motor commands distributed by postganglionic fibers
 - Control simple motor responses with localized effects
 - One small part of target organ

16-7 Visceral Reflexes Regulate the ANS

- Visceral Reflexes
 - Regulating visceral activity
 - Most organs
 - Long reflexes most important
 - Digestive tract

Short reflexes provide most control and coordination

16-7 Visceral Reflexes Regulate the ANS

- Visceral Reflexes
 - o Enteric nervous system
 - Ganglia in the walls of digestive tract contain cell bodies of:
 - Visceral sensory neurons
 - Interneurons
 - Visceral motor neurons
 - Axons form extensive nerve nets
 - Control digestive functions independent of CNS

16-7 Visceral Reflexes Regulate the ANS

- Higher Levels of Autonomic Control
 - o Simple reflexes from spinal cord provide rapid and automatic responses
 - Complex reflexes coordinated in medulla oblongata
 - Contains centers and nuclei involved in:
 - Salivation
 - Swallowing
 - Digestive secretions
 - o Peristalsis
 - Urinary function
 - Regulated by hypothalamus

16-7 Visceral Reflexes Regulate the ANS

- The Integration of SNS and ANS Activities
 - Many parallels in organization and function
 - Integration at brain stem
 - Both systems under control of higher centers

16-8 Higher-Order Functions

- Higher-Order Functions Share Three Characteristics
 - 1. Require the cerebral cortex
 - 2. Involve conscious and unconscious information processing
 - 3. Are not part of programmed "wiring" of brain
 - Can adjust over time

- Memory
 - Fact memories
 - Are specific bits of information
 - Skill memories

- Learned motor behaviors
- Incorporated at unconscious level with repetition
- Programmed behaviors stored in appropriate area of brain stem
- Complex skill memories are stored and involve motor patterns in the basal nuclei, cerebral cortex, and cerebellum

- Memory
 - Short-term memories
 - Information that can be recalled immediately
 - Contain small bits of information
 - Primary memories

16-8 Higher-Order Functions

- Memory
 - Long-term memories
 - Memory consolidation conversion from short-term to long-term memory
 - Two types of long-term memory
 - 1. Secondary memories fade and require effort to recall
 - 2. Tertiary memories are with you for life

16-8 Higher-Order Functions

- Brain Regions Involved in Memory Consolidation and Access
 - Amygdaloid body and hippocampus
 - Nucleus basalis
 - Cerebral cortex

16-8 Higher-Order Functions

- Amygdaloid Body and Hippocampus
 - Are essential to memory consolidation
 - Damage may cause:
 - Inability to convert short-term memories to new long-term memories
 - Existing long-term memories remain intact and accessible

- Nucleus Basalis
 - Cerebral nucleus near diencephalon
 - Plays uncertain role in memory storage and retrieval
 - Tracts connect with hippocampus, amygdaloid body, and cerebral cortex
 - o Damage changes emotional states, memory, and intellectual functions

- Cerebral Cortex
 - Stores long-term memories
 - Conscious motor and sensory memories referred to association areas
 - Occipital and temporal lobes
 - Special portions crucial to memories of faces, voices, and words
 - A specific neuron may be activated by combination of sensory stimuli associated with particular individual; called "grandmother cells"

16-8 Higher-Order Functions

- Cerebral Cortex
 - Visual association area
 - Auditory association area
 - Speech center
 - Frontal lobes
 - Related information stored in other locations
 - If storage area is damaged, memory will be incomplete

16-8 Higher-Order Functions

- Cellular Mechanisms of Memory Formation and Storage
 - Involves anatomical and physiological changes in neurons and synapses
 - Increased neurotransmitter release
 - Facilitation at synapses
 - Formation of additional synaptic connections

16-8 Higher-Order Functions

- Increased Neurotransmitter Release
 - Frequently active synapse increases the amount of neurotransmitter it stores
 - Releases more on each stimulation
 - The more neurotransmitter released, the greater effect on postsynaptic neuron

- Facilitation at Synapses
 - Neural circuit repeatedly activated
 - Synaptic terminals begin continuously releasing neurotransmitter
 - Neurotransmitter binds to receptors on postsynaptic membrane
 - o Produces graded depolarization
 - Brings membrane closer to threshold
 - Facilitation results affect all neurons in circuit

- Formation of Additional Synaptic Connections
 - Neurons repeatedly communicating
 - o Axon tip branches and forms additional synapses on postsynaptic neuron
 - Presynaptic neuron has greater effect on transmembrane potential of postsynaptic neuron

16-8 Higher-Order Functions

- Cellular Mechanisms of Memory Formation and Storage
 - Basis of memory storage
 - Processes create anatomical changes
 - Facilitate communication along specific neural circuit
 - Memory Engram
 - Single circuit corresponds to single memory
 - Forms as result of experience and repetition

16-8 Higher-Order Functions

- Cellular Mechanisms of Memory Formation and Storage
 - Efficient conversion of short-term memory
 - Takes at least 1 hour
 - Repetition crucial
 - Factors of conversion
 - Nature, intensity, and frequency of original stimulus
 - Strong, repeated, and exceedingly pleasant or unpleasant events likely converted to long-term memories

16-8 Higher-Order Functions

- Cellular Mechanisms of Memory Formation and Storage
 - Drugs stimulate CNS
 - Caffeine and nicotine are examples
 - Enhance memory consolidation through facilitation

- Cellular Mechanisms of Memory Formation and Storage
 - Drugs stimulate CNS
 - NMDA (N-methyl D-aspartate) Receptors
 - Linked to consolidation
 - Chemically gated calcium channels
 - Activated by neurotransmitter glutamate
 - Gates open, calcium enters cell
 - Blocking NMDA receptors in hippocampus prevents long-term memory formation

- States of Consciousness
 - Many gradations of states
 - Degree of wakefulness indicates level of ongoing CNS activity
 - When abnormal or depressed, state of wakefulness is affected

0

16-8 Higher-Order Functions

- States of Consciousness
 - Deep sleep
 - Also called slow-wave or Non-REM (NREM) sleep
 - Entire body relaxes
 - Cerebral cortex activity minimal
 - Heart rate, blood pressure, respiratory rate, and energy utilization decline up to 30 percent

16-8 Higher-Order Functions

- States of Consciousness
 - Rapid eye movement (REM) sleep
 - Active dreaming occurs
 - Changes in blood pressure and respiratory rate
 - Less receptive to outside stimuli than in deep sleep
 - Muscle tone decreases markedly
 - Intense inhibition of somatic motor neurons
 - Eyes move rapidly as dream events unfold

16-8 Higher-Order Functions

- States of Consciousness
 - Nighttime sleep pattern
 - Alternates between levels
 - Begins in deep sleep
 - REM periods average 5 minutes in length; increase to 20 minutes over 8 hours

- Sleep
 - Has important impact on CNS
 - Produces only minor changes in physiological activities of organs and systems
 - Protein synthesis in neurons increases during sleep
 - Extended periods without sleep lead to disturbances in mental function
 - o 25 percent of the U.S. population experiences sleep disorders

- States of Consciousness
 - Arousal and the reticular activating system (RAS)
 - Awakening from sleep
 - Function of reticular formation
 - Extensive interconnections with sensory, motor, integrative nuclei, and pathways along brain stem
 - Determined by complex interactions between reticular formation and cerebral cortex

16-8 Higher-Order Functions

- Reticular Activating System (RAS)
 - Important brain stem component
 - Diffuse network in reticular formation
 - Extends from medulla oblongata to midbrain
 - Output of RAS projects to thalamic nuclei that influence large areas of cerebral cortex
 - When RAS inactive, so is cerebral cortex
 - Stimulation of RAS produces widespread activation of cerebral cortex

16-8 Higher-Order Functions

- Arousal and the Reticular Activating System
 - Ending sleep
 - Any stimulus activates reticular formation and RAS
 - Arousal occurs rapidly
 - Effects of single stimulation of RAS last less than a minute

16-8 Higher-Order Functions

- Arousal and the Reticular Activating System
 - Maintaining consciousness
 - Activity in cerebral cortex, basal nuclei, and sensory and motor pathways continue to stimulate RAS
 - After many hours, reticular formation becomes less responsive to stimulation
 - Individual becomes less alert and more lethargic
 - Neural fatigue reduces RAS activity

- Arousal and the Reticular Activating System
 - Regulation of sleep—wake cycles
 - Involves interplay between brain stem nuclei that use different neurotransmitters

- Group of nuclei stimulates RAS with NE and maintains awake, alert state
- Other group promotes deep sleep by depressing RAS activity with serotonin
- "Dueling" nuclei located in brain stem

16-9 Brain Chemistry

- Brain Chemistry
 - Changes in normal balance between two or more neurotransmitters can profoundly affect brain function

16-9 Brain Chemistry

- Huntington's Disease
 - Destruction of ACh-secreting and GABA-secreting neurons in basal nuclei
 - Symptoms appear as basal nuclei and frontal lobes slowly degenerate
 - Difficulty controlling movements
 - Intellectual abilities gradually decline

16-9 Brain Chemistry

- Lysergic Acid Diethylamide (LSD)
 - Powerful hallucinogenic drug
 - Activates serotonin receptors in brain stem, hypothalamus, and limbic system

16-9 Brain Chemistry

- Serotonin
 - Compounds that enhance effects also produce hallucinations (LSD)
 - Compounds that inhibit or block action cause severe depression and anxiety
 - Variations in levels affect sensory interpretation and emotional states

16-9 Brain Chemistry

- Serotonin
 - Fluoxetine (Prozac)
 - Slows removal of serotonin at synapses
 - Increases serotonin concentrations at postsynaptic membrane
 - Classified as selective serotonin reuptake inhibitors (SSRIs)
 - Other SSRIs
 - o Celexa, Luvox, Paxil, and Zoloft

16-9 Brain Chemistry

- Parkinson's Disease
 - Inadequate dopamine production causes motor problems
 - Dopamine
 - Secretion stimulated by amphetamines, or "speed"
 - Large doses can produce symptoms resembling schizophrenia
 - Important in nuclei that control intentional movements
 - Important in other centers of diencephalon and cerebrum

16-10 Effects of Aging on the Nervous System

- Effects of Aging
 - Anatomical and physiological changes begin after maturity (age 30)
 - o Accumulate over time
 - 85 percent of people over age 65 have changes in mental performance and CNS function

16-10 Effects of Aging on the Nervous System

- Common Age-related Anatomical Changes in the Nervous System
 - o Reduction in Brain Size and Weight
 - Reduction in Number of Neurons
 - Decrease in Blood Flow to Brain
 - Changes in Synaptic Organization of Brain
 - o Intracellular and Extracellular Changes in CNS Neurons

16-10 Effects of Aging on the Nervous System

- Reduction in Brain Size and Weight
 - Decrease in volume of cerebral cortex
 - Narrower gyri and wider sulci
 - Larger subarachnoid space
- Reduction in Number of Neurons
 - Brain shrinkage linked to loss of cortical neurons
 - No neuronal loss in brain stem nuclei

16-10 Effects of Aging on the Nervous System

- Decrease in Blood Flow to Brain
 - Arteriosclerosis
 - Fatty deposits in walls of blood vessels
 - Reduces blood flow through arteries
 - Increases chances of rupture
 - o Cerebrovascular accident (CVA), or stroke
 - May damage surrounding neural tissue

16-10 Effects of Aging on the Nervous System

- Changes in Synaptic Organization of Brain
 - o Number of dendritic branches, spines, and interconnections decreases
 - Synaptic connections lost
 - Rate of neurotransmitter production declines

16-10 Effects of Aging on the Nervous System

- Intracellular and Extracellular Changes in CNS Neurons
 - Neurons in brain accumulate abnormal intracellular deposits
 - o Lipofuscin
 - Granular pigment with no known function
 - Neurofibrillary tangles
 - Masses of neurofibrils form dense mats inside cell body and axon

16-10 Effects of Aging on the Nervous System

- Intracellular and Extracellular Changes in CNS Neurons
 - Plaques
 - Extracellular accumulations of fibrillar proteins
 - Surrounded by abnormal dendrites and axons

16-10 Effects of Aging on the Nervous System

- Intracellular and Extracellular Changes in CNS Neurons
 - Plagues and tangles
 - Contain deposits of several peptides
 - Primarily two forms of amyloid ß (Aß) protein
 - Appear in brain regions specifically associated with memory processing

16-10 Effects of Aging on the Nervous System

- Anatomical Changes
 - Linked to functional changes
 - Neural processing becomes less efficient with age
 - Memory consolidation more difficult
 - Secondary memories harder to access

16-10 Effects of Aging on the Nervous System

- Sensory Systems
 - o Hearing, balance, vision, smell, and taste become less acute
 - Reaction times slowed
 - o Reflexes weaken or disappear
- Motor Control
 - Precision decreases
 - Takes longer to perform

16-10 Effects of Aging on the Nervous System

- Incapacitation
 - 85 percent of elderly population develops changes that do not interfere with abilities
 - Some individuals become incapacitated by progressive CNS changes

16-10 Effects of Aging on the Nervous System

- Senility
 - Also called senile dementia
 - Degenerative changes
 - Memory loss
 - Anterograde amnesia (lose ability to store new memories)
 - Emotional disturbances
 - Alzheimer's disease is most common

16-10 Nervous System Integration

- The Nervous System
 - Monitors all other systems
 - Issues commands that adjust their activities
 - Like conductor of orchestra

16-10 Nervous System Integration

- Neural Tissue
 - Extremely delicate
 - Extracellular environment must maintain homeostatic limits
 - If regulatory mechanisms break down, neurological disorders appear