Chapter 13

The Spinal Cord, Spinal Nerves, and Spinal Reflexes

An Introduction to the Spinal Cord, Spinal Nerves, and Spinal Reflexes

- Spinal Reflexes
 - o Rapid, automatic nerve responses triggered by specific stimuli
 - o Controlled by spinal cord alone, not the brain

13-2 Spinal Cord

- Gross Anatomy of the Spinal Cord
 - About 18 inches (45 cm) long
 - o 1/2 inch (14 mm) wide
 - \circ Ends between vertebrae L₁ and L₂
 - o Bilateral symmetry
 - Grooves divide the spinal cord into left and right
 - Posterior median sulcus on posterior side
 - o Anterior median fissure deeper groove on anterior side

13-2 Spinal Cord

- Enlargements of the Spinal Cord
 - o Caused by:
 - Amount of gray matter in segment
 - Involvement with sensory and motor nerves of limbs
 - Cervical enlargement
 - Nerves of shoulders and upper limbs
 - Lumbar enlargement
 - Nerves of pelvis and lower limbs

13-2 Spinal Cord

- Gross Anatomy of the Spinal Cord
 - o The distal end
 - Conus medullaris
 - Thin, conical spinal cord below lumbar enlargement
 - Filum terminale
 - Thin thread of fibrous tissue at end of conus medullaris
 - Attaches to coccygeal ligament
 - Cauda equina
 - o Nerve roots extending below conus medullaris

13-2 Spinal Cord

- 31 Spinal Cord Segments
 - o Based on vertebrae where spinal nerves originate
 - Positions of spinal segment and vertebrae change with age
 - Cervical nerves
 - Named for inferior vertebra
 - All other nerves

 Named for superior vertebra

13-2 Spinal Cord

- Roots
 - Two branches of spinal nerves
 - 1. Ventral root
 - o Contains axons of motor neurons
 - 2. Dorsal root
 - Contains axons of sensory neurons
 - Dorsal root ganglia
 - Contain cell bodies of sensory neurons

13-2 Spinal Cord

- The Spinal Nerve
 - o Each side of spine
 - Dorsal and ventral roots join
 - To form a spinal nerve
 - Mixed Nerves
 - Carry both afferent (sensory) and efferent (motor) fibers

13-2 Spinal Cord

• The Spinal Meninges

- Specialized membranes isolate spinal cord from surroundings
- Functions of the spinal meninges include:
 - Protecting spinal cord
 - Carrying blood supply
 - Continuous with cranial meninges
- Meningitis
 - Viral or bacterial infection of meninges

13-2 Spinal Cord

- The Three Meningeal Layers
 - 1. Dura mater
 - Outer layer of spinal cord
 - 2. Arachnoid mater
 - Middle meningeal layer

3. Pia mater

Inner meningeal layer

13-2 Spinal Cord

• The Dura Mater

- Tough and fibrous
- o Cranially
 - Fuses with periosteum of occipital bone
 - Is continuous with cranial dura mater
- Caudally
 - Tapers to dense cord of collagen fibers
 - Joins filum terminale in coccygeal ligament

13-2 Spinal Cord

- The Dura Mater
 - The epidural space
 - Between spinal dura mater and walls of vertebral canal
 - Contains loose connective and adipose tissue
 - Anesthetic injection site

13-2 Spinal Cord

- The Arachnoid Mater
 - Middle meningeal layer
 - Arachnoid membrane
 - Simple squamous epithelia
 - Covers arachnoid mater

13-2 Spinal Cord

- The Interlayer Spaces of Arachnoid Mater
 - Subdural space
 - Between arachnoid mater and dura mater
 - Subarachnoid space
 - Between arachnoid mater and pia mater
 - Contains collagen/elastin fiber network (arachnoid trabeculae)
 - Filled with cerebrospinal fluid (CSF)

13-2 Spinal Cord

- The Interlayer Spaces of Arachnoid Mater
 - Cerebrospinal Fluid (CSF)
 - Carries dissolved gases, nutrients, and wastes
 - Lumbar puncture or spinal tap withdraws CSF

13-2 Spinal Cord

The Pia Mater

- Is the innermost meningeal layer
- Is a mesh of collagen and elastic fibers
- Is bound to underlying neural tissue

13-2 Spinal Cord

- Structures of the Spinal Cord
 - o Paired denticulate ligaments
 - Extend from pia mater to dura mater
 - Stabilize side-to-side movement
 - Blood vessels
 - Along surface of spinal pia mater
 - Within subarachnoid space

13-3 Gray Matter and White Matter

- Sectional Anatomy of the Spinal Cord
 - White matter
 - Is superficial
 - Contains myelinated and unmyelinated axons
 - o Gray matter
 - Surrounds the **central canal** of spinal cord
 - Contains neuron cell bodies, neuroglia, unmyelinated axons
 - Has projections (gray horns)

13-3 Gray Matter and White Matter

- Organization of Gray Matter
 - The gray horns
 - Posterior gray horns contain somatic and visceral sensory nuclei
 - Anterior gray horns contain somatic motor nuclei
 - Lateral gray horns are in thoracic and lumbar segments; contain visceral motor nuclei
 - Gray commissures
 - Axons that cross from one side of cord to the other before reaching gray matter

13-3 Gray Matter and White Matter

- Organization of Gray Matter
 - The cell bodies of neurons form functional groups called nuclei
 - Sensory nuclei
 - Dorsal (posterior)
 - Connect to peripheral receptors
 - Motor nuclei

- Ventral (anterior)
- Connect to peripheral effectors

13-3 Gray Matter and White Matter

- Control and Location
 - Sensory or motor nucleus location within the gray matter determines which body part it controls

13-3 Gray Matter and White Matter

- Organization of White Matter
 - Posterior white columns lie between posterior gray horns and posterior median sulcus
 - Anterior white columns lie between anterior gray horns and anterior median fissure
 - Anterior white commissure is area where axons cross from one side of spinal cord to the other
 - Lateral white columns located on each side of spinal cord between anterior and posterior columns

13-3 Gray Matter and White Matter

- Organization of White Matter
 - Tracts or fasciculi
 - In white columns
 - Bundles of axons
 - Relay same information in same direction
 - Ascending tracts
 - Carry information to brain
 - Descending tracts
 - o Carry motor commands to spinal cord

13-3 Gray Matter and White Matter

- Spinal Cord Summary
 - Spinal cord has a narrow central canal
 - Surrounded by gray matter
 - Containing sensory and motor nuclei
 - Sensory nuclei are dorsal
 - Motor nuclei are ventral

13-3 Gray Matter and White Matter

- Spinal Cord Summary
 - o Gray matter
 - Is covered by a thick layer of white matter

- o White matter
 - Consists of ascending and descending axons
 - Organized in columns
 - Contains axon bundles with specific functions
- Spinal cord is so highly organized:
 - It is possible to predict results of injuries to specific areas

13-4 Spinal Nerves and Plexuses

- Anatomy of Spinal Nerves
 - Each spinal cord segment:
 - Is connected to a pair of spinal nerves
 - Each spinal nerve:
 - Is surrounded by three connective tissue layers
 - That support structures and contain blood vessels

13-4 Spinal Nerves and Plexuses

- Three Connective Tissue Layers of Spinal Nerves
 - 1. Epineurium
 - Outer layer
 - Dense network of collagen fibers
 - 2. Perineurium
 - Middle layer
 - Divides nerve into fascicles (axon bundles)
 - 3. Endoneurium
 - Inner layer
 - Surrounds individual axons

13-4 Spinal Nerves and Plexuses

- Peripheral Nerves
 - o Interconnecting branches of spinal nerves
 - Surrounded by connective tissue sheaths

13-4 Spinal Nerves and Plexuses

- Peripheral Distribution of Spinal Nerves
 - Spinal nerves
 - Form lateral to intervertebral foramen
 - Where dorsal and ventral roots unite
 - Then branch and form pathways to destination

13-4 Spinal Nerves and Plexuses

- Peripheral Distribution of Spinal Nerves
 - Motor nerves

- The first branch
 - White ramus
 - Carries visceral motor fibers to sympathetic ganglion of autonomic nervous system
 - o Gray ramus
 - Unmyelinated nerves
 - Return from sympathetic ganglion to rejoin spinal nerve

13-4 Spinal Nerves and Plexuses

- Peripheral Distribution of Spinal Nerves
 - $\circ \quad \text{Motor nerves}$
 - Dorsal and ventral rami
 - Dorsal ramus
 - Contains somatic and visceral motor fibers
 - Innervates the back
 - o Ventral ramus
 - Larger branch
 - Innervates ventrolateral structures and limbs

13-4 Spinal Nerves and Plexuses

- Peripheral Distribution of Spinal Nerves
 - o Sensory nerves
 - In addition to motor impulses:
 - o Dorsal, ventral, and white rami also carry sensory information
 - Dermatomes
 - Bilateral region of skin
 - Monitored by specific pair of spinal nerves

13-4 Spinal Nerves and Plexuses

- Peripheral Neuropathy
 - Regional loss of sensory or motor function
 - o Due to trauma or compression

13-4 Spinal Nerves and Plexuses

Nerve Plexuses

- Complex, interwoven networks of nerve fibers
- o Formed from blended fibers of ventral rami of adjacent spinal nerves
- Control skeletal muscles of the neck and limbs

13-4 Spinal Nerves and Plexuses

- The Four Major Plexuses of Ventral Rami
 - 1. Cervical plexus

- 2. Brachial plexus
- 3. Lumbar plexus
- 4. Sacral plexus

13-4 Spinal Nerves and Plexuses

- The Cervical Plexus
 - Includes ventral rami of spinal nerves C₁-C₅
 - o Innervates neck, thoracic cavity, diaphragmatic muscles
 - o Major nerve
 - Phrenic nerve (controls diaphragm)

13-4 Spinal Nerves and Plexuses

- The Brachial Plexus
 - Includes ventral rami of spinal nerves C₅-T₁
 - Innervates pectoral girdle and upper limbs
 - Nerves that form brachial plexus originate from:
 - Superior, middle, and inferior trunks
 - Large bundles of axons from several spinal nerves
 - Lateral, medial, and posterior cords
 - Smaller branches that originate at trunks

13-4 Spinal Nerves and Plexuses

- The Brachial Plexus
 - Major nerves
 - Musculocutaneous nerve (lateral cord)
 - Median nerve (lateral and medial cords)
 - Ulnar nerve (medial cord)
 - Axillary nerve (posterior cord)
 - Radial nerve (posterior cord)

13-4 Spinal Nerves and Plexuses

- The Lumbar Plexus
 - Includes ventral rami of spinal nerves T₁₂-L₄
 - Major nerves
 - Genitofemoral nerve
 - Lateral femoral cutaneous nerve
 - Femoral nerve

13-4 Spinal Nerves and Plexuses

- The Sacral Plexus
 - Includes ventral rami of spinal nerves L₄-S₄
 - Major nerves

- Pudendal nerve
- Sciatic nerve
- Two branches of the sciatic nerve
 - 1. Fibular nerve
 - 2. Tibial nerve

13-5 Neuronal Pools

- Functional Organization of Neurons
 - Sensory neurons
 - About 10 million
 - Deliver information to CNS
 - Motor neurons
 - About 1/2 million
 - Deliver commands to peripheral effectors
 - o Interneurons
 - About 20 billion
 - Interpret, plan, and coordinate signals in and out

13-5 Neuronal Pools

- Neuronal Pools
 - Functional groups of interconnected neurons (interneurons)
 - Each with limited input sources and output destinations
 - o May stimulate or depress parts of brain or spinal cord

13-5 Neuronal Pools

- Five Patterns of *Neural Circuits* in Neuronal Pools
 - 1. Divergence
 - Spreads stimulation to many neurons or neuronal pools in CNS
 - 2. Convergence
 - Brings input from many sources to single neuron
 - 3. Serial processing
 - Moves information in single line

13-5 Neuronal Pools

- Five Patterns of Neural Circuits in Neuronal Pools
 - 4. Parallel processing
 - Moves same information along several paths simultaneously
 - 5. Reverberation
 - Positive feedback mechanism
 - Functions until inhibited

13-6 Reflexes

Reflexes

- Automatic responses coordinated within spinal cord
- Through interconnected sensory neurons, motor neurons, and interneurons
- Produce simple and complex reflexes

13-6 Reflexes

- Neural Reflexes
 - o Rapid, automatic responses to specific stimuli
 - Basic building blocks of neural function
 - One neural reflex produces one motor response
 - Reflex arc
 - The wiring of a single reflex
 - Beginning at *receptor*
 - Ending at peripheral effector
 - Generally opposes original stimulus (negative feedback)

13-6 Reflexes

- Five Steps in a Neural Reflex
 - Step 1: Arrival of stimulus, activation of receptor
 - Physical or chemical changes
 - Step 2: Activation of sensory neuron
 - Graded depolarization
 - Step 3: Information processing by postsynaptic cell
 - Triggered by neurotransmitters
 - Step 4: Activation of motor neuron
 - Action potential
 - Step 5: Response of peripheral effector
 - Triggered by neurotransmitters

13-6 Reflexes

- Four Classifications of Reflexes
 - 1. By early development
 - 2. By type of motor response
 - 3. By complexity of neural circuit
 - 4. By site of information processing

13-6 Reflexes

- Development of Reflexes
 - Innate reflexes
 - Basic neural reflexes
 - Formed before birth
 - Acquired reflexes

- Rapid, automatic
- Learned motor patterns

13-6 Reflexes

- Motor Response
 - Nature of resulting motor response
 - Somatic reflexes
 - o Involuntary control of nervous system
 - Superficial reflexes of skin, mucous membranes
 - Stretch or deep tendon reflexes (e.g., patellar, or "knee-jerk," reflex)
 - Visceral reflexes (autonomic reflexes)
 - o Control systems other than muscular system

13-6 Reflexes

- Complexity of Neural Circuit
 - Monosynaptic reflex
 - Sensory neuron synapses directly onto motor neuron
 - Polysynaptic reflex
 - At least one interneuron between sensory neuron and motor neuron

13-6 Reflexes

- Sites of Information Processing
 - Spinal reflexes
 - Occur in spinal cord
 - Cranial reflexes
 - Occur in brain

13-7 Spinal Reflexes

- Spinal Reflexes
 - Range in increasing order of complexity
 - Monosynaptic reflexes
 - Polysynaptic reflexes
 - Intersegmental reflex arcs
 - Many segments interact
 - Produce highly variable motor response

13-7 Spinal Reflexes

- Monosynaptic Reflexes
 - o A stretch reflex
 - \circ $\,$ Have least delay between sensory input and motor output $\,$
 - For example, stretch reflex (such as patellar reflex)

- Completed in 20–40 msec
- Receptor is muscle spindle

13-7 Spinal Reflexes

Muscle Spindles

- The receptors in stretch reflexes
- Bundles of small, specialized intrafusal muscle fibers
 - Innervated by sensory and motor neurons
- Surrounded by extrafusal muscle fibers
 - Which maintain tone and contract muscle

13-7 Spinal Reflexes

- The Sensory Region
 - Central region of intrafusal fibers
 - Wound with dendrites of sensory neurons
 - o Sensory neuron axon enters CNS in dorsal root
 - Synapses onto motor neurons (gamma motor neurons)
 - In anterior gray horn of spinal cord

13-7 Spinal Reflexes

Gamma Efferents

- Axons of the motor neurons
- Complete reflex arc
 - Synapse back onto intrafusal fibers
- o Important in voluntary muscle contractions
 - Allow CNS to adjust sensitivity of muscle spindles

13-7 Spinal Reflexes

Postural Reflexes

- Stretch reflexes
- o Maintain normal upright posture
- Stretched muscle responds by contracting
 - Automatically maintains balance

13-7 Spinal Reflexes

- Polysynaptic Reflexes
 - More complicated than monosynaptic reflexes
 - Interneurons control more than one muscle group
 - Produce either EPSPs or IPSPs

13-7 Spinal Reflexes

• The Tendon Reflex

- Prevents skeletal muscles from:
 - Developing too much tension
 - Tearing or breaking tendons
- Sensory receptors unlike muscle spindles or proprioceptors

13-7 Spinal Reflexes

Withdrawal Reflexes

- Move body part away from stimulus (pain or pressure)
 - For example, flexor reflex
 - Pulls hand away from hot stove
- o Strength and extent of response
 - Depend on intensity and location of stimulus

13-7 Spinal Reflexes

Reciprocal Inhibition

- For flexor reflex to work
 - The stretch reflex of antagonistic (extensor) muscle must be inhibited (reciprocal inhibition) by interneurons in spinal cord

13-7 Spinal Reflexes

- Reflex Arcs
 - o Ipsilateral reflex arcs
 - Occur on same side of body as stimulus
 - Stretch, tendon, and withdrawal reflexes
 - Crossed extensor reflexes
 - Involve a contralateral reflex arc
 - Occur on side opposite stimulus

13-7 Spinal Reflexes

- Crossed Extensor Reflexes
 - Occur simultaneously, coordinated with flexor reflex
 - o For example, flexor reflex causes leg to pull up
 - Crossed extensor reflex straightens other leg
 - To receive body weight
 - Maintained by reverberating circuits

13-7 Spinal Reflexes

- Five General Characteristics of Polysynaptic Reflexes
 - 1. Involve pools of interneurons
 - 2. Are intersegmental in distribution
 - 3. Involve reciprocal inhibition

- 4. Have reverberating circuits
 - Which prolong reflexive motor response
- 5. Several reflexes cooperate
 - To produce coordinated, controlled response

13-8 The Brain Can Alter Spinal Reflexes

- Integration and Control of Spinal Reflexes
 - o Reflex behaviors are automatic
 - But processing centers in brain can facilitate or inhibit reflex motor patterns based in spinal cord

13-8 The Brain Can Alter Spinal Reflexes

- Voluntary Movements and Reflex Motor Patterns
 - Higher centers of brain incorporate lower, reflexive motor patterns
 - Automatic reflexes
 - Can be activated by brain as needed
 - Use few nerve impulses to control complex motor functions
 - Walking, running, jumping

13-8 The Brain Can Alter Spinal Reflexes

- Reinforcement of Spinal Reflexes
 - Higher centers reinforce spinal reflexes
 - By stimulating excitatory neurons in brain stem or spinal cord
 - Creating EPSPs at reflex motor neurons
 - Facilitating postsynaptic neurons

13-8 The Brain Can Alter Spinal Reflexes

- Inhibition of Spinal Reflexes
 - Higher centers inhibit spinal reflexes by:
 - Stimulating inhibitory neurons
 - Creating IPSPs at reflex motor neurons
 - Suppressing postsynaptic neurons

13-8 The Brain Can Alter Spinal Reflexes

- The Babinski Reflexes
 - Normal in infants
 - May indicate CNS damage in adults