Chapter 13
The Spinal Cord, Spinal Nerves, and Spinal Reflexes

An Introduction to the Spinal Cord, Spinal Nerves, and Spinal Reflexes

• Spinal Reflexes
 o Rapid, automatic nerve responses triggered by specific stimuli
 o Controlled by spinal cord alone, not the brain

13-2 Spinal Cord
• Gross Anatomy of the Spinal Cord
 o About 18 inches (45 cm) long
 o 1/2 inch (14 mm) wide
 o Ends between vertebrae L₁ and L₂
 o Bilateral symmetry
 ▪ Grooves divide the spinal cord into left and right
 o Posterior median sulcus – on posterior side
 o Anterior median fissure – deeper groove on anterior side

13-2 Spinal Cord
• Enlargements of the Spinal Cord
 o Caused by:
 ▪ Amount of gray matter in segment
 ▪ Involvement with sensory and motor nerves of limbs
 o Cervical enlargement
 ▪ Nerves of shoulders and upper limbs
 o Lumbar enlargement
 ▪ Nerves of pelvis and lower limbs

13-2 Spinal Cord
• Gross Anatomy of the Spinal Cord
 o The distal end
 ▪ Conus medullaris
 o Thin, conical spinal cord below lumbar enlargement
 ▪ Filum terminale
 o Thin thread of fibrous tissue at end of conus medullaris
 o Attaches to coccygeal ligament
 ▪ Cauda equina
 o Nerve roots extending below conus medullaris

© 2015 Pearson Education, Inc.
13-2 Spinal Cord
• 31 Spinal Cord Segments
 o Based on vertebrae where spinal nerves originate
 o Positions of spinal segment and vertebrae change with age
 ▪ Cervical nerves
 o Named for inferior vertebra
 ▪ All other nerves
 o Named for superior vertebra

13-2 Spinal Cord
• Roots
 o Two branches of spinal nerves
 1. Ventral root
 o Contains axons of motor neurons
 2. Dorsal root
 o Contains axons of sensory neurons
 o Dorsal root ganglia
 ▪ Contain cell bodies of sensory neurons

13-2 Spinal Cord
• The Spinal Nerve
 o Each side of spine
 ▪ Dorsal and ventral roots join
 ▪ To form a spinal nerve
 o Mixed Nerves
 ▪ Carry both afferent (sensory) and efferent (motor) fibers

13-2 Spinal Cord
• The Spinal Meninges
 o Specialized membranes isolate spinal cord from surroundings
 o Functions of the spinal meninges include:
 ▪ Protecting spinal cord
 ▪ Carrying blood supply
 ▪ Continuous with cranial meninges
 o Meningitis
 ▪ Viral or bacterial infection of meninges

13-2 Spinal Cord
• The Three Meningeal Layers
 1. Dura mater
 ▪ Outer layer of spinal cord
 2. Arachnoid mater
 ▪ Middle meningeal layer
3. **Pia mater**
 - Inner meningeal layer

13-2 Spinal Cord

The Dura Mater
- Tough and fibrous
- Cranially
 - Fuses with periosteum of occipital bone
 - Is continuous with cranial dura mater
- Caudally
 - Tapers to dense cord of collagen fibers
 - Joins filum terminale in **coccygeal ligament**

13-2 Spinal Cord

The Epidural Space
- Between spinal dura mater and walls of vertebral canal
- Contains loose connective and adipose tissue
- Anesthetic injection site

13-2 Spinal Cord

The Arachnoid Mater
- Middle meningeal layer
- Arachnoid membrane
 - Simple squamous epithelia
 - Covers arachnoid mater

13-2 Spinal Cord

The Interlayer Spaces of Arachnoid Mater
- **Subdural space**
 - Between arachnoid mater and dura mater
- **Subarachnoid space**
 - Between arachnoid mater and pia mater
 - Contains collagen/elastin fiber network (arachnoid trabeculae)
 - Filled with **cerebrospinal fluid (CSF)**

13-2 Spinal Cord

The Interlayer Spaces of Arachnoid Mater
- **Cerebrospinal Fluid (CSF)**
 - Carries dissolved gases, nutrients, and wastes
 - **Lumbar puncture** or **spinal tap** withdraws CSF
13-2 Spinal Cord
• The Pia Mater
 o Is the innermost meningeal layer
 o Is a mesh of collagen and elastic fibers
 o Is bound to underlying neural tissue

13-2 Spinal Cord
• Structures of the Spinal Cord
 o Paired denticulate ligaments
 ▪ Extend from pia mater to dura mater
 ▪ Stabilize side-to-side movement
 o Blood vessels
 ▪ Along surface of spinal pia mater
 ▪ Within subarachnoid space

13-3 Gray Matter and White Matter
• Sectional Anatomy of the Spinal Cord
 o White matter
 ▪ Is superficial
 ▪ Contains myelinated and unmyelinated axons
 o Gray matter
 ▪ Surrounds the central canal of spinal cord
 ▪ Contains neuron cell bodies, neuroglia, unmyelinated axons
 ▪ Has projections (gray horns)

13-3 Gray Matter and White Matter
• Organization of Gray Matter
 o The gray horns
 ▪ Posterior gray horns contain somatic and visceral sensory nuclei
 ▪ Anterior gray horns contain somatic motor nuclei
 ▪ Lateral gray horns are in thoracic and lumbar segments; contain visceral motor nuclei
 o Gray commissures
 ▪ Axons that cross from one side of cord to the other before reaching gray matter

13-3 Gray Matter and White Matter
• Organization of Gray Matter
 o The cell bodies of neurons form functional groups called nuclei
 ▪ Sensory nuclei
 o Dorsal (posterior)
 o Connect to peripheral receptors
 ▪ Motor nuclei

© 2015 Pearson Education, Inc.
13-3 Gray Matter and White Matter

• Control and Location
 - Sensory or motor nucleus location within the gray matter determines which body part it controls

13-3 Gray Matter and White Matter

• Organization of White Matter
 - Posterior white columns lie between posterior gray horns and posterior median sulcus
 - Anterior white columns lie between anterior gray horns and anterior median fissure
 - Anterior white commissure is area where axons cross from one side of spinal cord to the other
 - Lateral white columns located on each side of spinal cord between anterior and posterior columns

13-3 Gray Matter and White Matter

• Organization of White Matter
 - Tracts or fasciculi
 - In white columns
 - Bundles of axons
 - Relay same information in same direction
 - Ascending tracts
 - Carry information to brain
 - Descending tracts
 - Carry motor commands to spinal cord

13-3 Gray Matter and White Matter

• Spinal Cord Summary
 - Spinal cord has a narrow central canal
 - Surrounded by gray matter
 - Containing sensory and motor nuclei
 - Sensory nuclei are dorsal
 - Motor nuclei are ventral

13-3 Gray Matter and White Matter

• Spinal Cord Summary
 - Gray matter
 - Is covered by a thick layer of white matter
White matter
- Consists of ascending and descending axons
- Organized in columns
- Contains axon bundles with specific functions

Spinal cord is so highly organized:
- It is possible to predict results of injuries to specific areas

13-4 Spinal Nerves and Plexuses
• Anatomy of Spinal Nerves
 o Each spinal cord segment:
 ▪ Is connected to a pair of spinal nerves
 o Each spinal nerve:
 ▪ Is surrounded by three connective tissue layers
 ▪ That support structures and contain blood vessels

13-4 Spinal Nerves and Plexuses
• Three Connective Tissue Layers of Spinal Nerves
 1. Epineurium
 ▪ Outer layer
 ▪ Dense network of collagen fibers
 2. Perineurium
 ▪ Middle layer
 ▪ Divides nerve into fascicles (axon bundles)
 3. Endoneurium
 ▪ Inner layer
 ▪ Surrounds individual axons

13-4 Spinal Nerves and Plexuses
• Peripheral Nerves
 o Interconnecting branches of spinal nerves
 o Surrounded by connective tissue sheaths

13-4 Spinal Nerves and Plexuses
• Peripheral Distribution of Spinal Nerves
 o Spinal nerves
 ▪ Form lateral to intervertebral foramen
 ▪ Where dorsal and ventral roots unite
 ▪ Then branch and form pathways to destination

13-4 Spinal Nerves and Plexuses
• Peripheral Distribution of Spinal Nerves
 o Motor nerves
- The first branch
 - White ramus
 - Carries visceral motor fibers to sympathetic ganglion of autonomic nervous system
 - Gray ramus
 - Unmyelinated nerves
 - Return from sympathetic ganglion to rejoin spinal nerve

13-4 Spinal Nerves and Plexuses
- Peripheral Distribution of Spinal Nerves
 - Motor nerves
 - Dorsal and ventral rami
 - Dorsal ramus
 - Contains somatic and visceral motor fibers
 - Innervates the back
 - Ventral ramus
 - Larger branch
 - Innervates ventrolateral structures and limbs

13-4 Spinal Nerves and Plexuses
- Sensory nerves
 - In addition to motor impulses:
 - Dorsal, ventral, and white rami also carry sensory information
 - Dermatomes
 - Bilateral region of skin
 - Monitored by specific pair of spinal nerves

13-4 Spinal Nerves and Plexuses
- Peripheral Neuropathy
 - Regional loss of sensory or motor function
 - Due to trauma or compression

13-4 Spinal Nerves and Plexuses
- Nerve Plexuses
 - Complex, interwoven networks of nerve fibers
 - Formed from blended fibers of ventral rami of adjacent spinal nerves
 - Control skeletal muscles of the neck and limbs

13-4 Spinal Nerves and Plexuses
- The Four Major Plexuses of Ventral Rami
 1. Cervical plexus
2. Brachial plexus
3. Lumbar plexus
4. Sacral plexus

13-4 Spinal Nerves and Plexuses
- The Cervical Plexus
 - Includes ventral rami of spinal nerves C₁–C₅
 - Innervates neck, thoracic cavity, diaphragmatic muscles
 - Major nerve
 - Phrenic nerve (controls diaphragm)

13-4 Spinal Nerves and Plexuses
- The Brachial Plexus
 - Includes ventral rami of spinal nerves C₅–T₁
 - Innervates pectoral girdle and upper limbs
 - Nerves that form brachial plexus originate from:
 - Superior, middle, and inferior trunks
 - Large bundles of axons from several spinal nerves
 - Lateral, medial, and posterior cords
 - Smaller branches that originate at trunks

13-4 Spinal Nerves and Plexuses
- The Brachial Plexus
 - Major nerves
 - Musculocutaneous nerve (lateral cord)
 - Median nerve (lateral and medial cords)
 - Ulnar nerve (medial cord)
 - Axillary nerve (posterior cord)
 - Radial nerve (posterior cord)

13-4 Spinal Nerves and Plexuses
- The Lumbar Plexus
 - Includes ventral rami of spinal nerves T₁₂–L₄
 - Major nerves
 - Genitofemoral nerve
 - Lateral femoral cutaneous nerve
 - Femoral nerve

13-4 Spinal Nerves and Plexuses
- The Sacral Plexus
 - Includes ventral rami of spinal nerves L₄–S₄
 - Major nerves
- Pudendal nerve
- Sciatic nerve
 - Two branches of the sciatic nerve
 1. Fibular nerve
 2. Tibial nerve

13-5 Neuronal Pools
- Functional Organization of Neurons
 - Sensory neurons
 - About 10 million
 - Deliver information to CNS
 - Motor neurons
 - About 1/2 million
 - Deliver commands to peripheral effectors
 - Interneurons
 - About 20 billion
 - Interpret, plan, and coordinate signals in and out

13-5 Neuronal Pools
- Neuronal Pools
 - Functional groups of interconnected neurons (interneurons)
 - Each with limited input sources and output destinations
 - May stimulate or depress parts of brain or spinal cord

13-5 Neuronal Pools
- Five Patterns of Neural Circuits in Neuronal Pools
 1. Divergence
 - Spreads stimulation to many neurons or neuronal pools in CNS
 2. Convergence
 - Brings input from many sources to single neuron
 3. Serial processing
 - Moves information in single line

13-5 Neuronal Pools
- Five Patterns of Neural Circuits in Neuronal Pools
 4. Parallel processing
 - Moves same information along several paths simultaneously
 5. Reverberation
 - Positive feedback mechanism
 - Functions until inhibited

13-6 Reflexes
• **Reflexes**
 o Automatic responses coordinated within spinal cord
 o Through interconnected sensory neurons, motor neurons, and interneurons
 o Produce simple and complex reflexes

13-6 Reflexes
• **Neural Reflexes**
 o Rapid, automatic responses to specific stimuli
 o Basic building blocks of neural function
 o One neural reflex produces one motor response
 o **Reflex arc**
 ▪ The wiring of a single reflex
 ▪ Beginning at receptor
 ▪ Ending at peripheral effector
 ▪ Generally opposes original stimulus (negative feedback)

13-6 Reflexes
• Five Steps in a Neural Reflex
 o **Step 1: Arrival of stimulus, activation of receptor**
 ▪ Physical or chemical changes
 o **Step 2: Activation of sensory neuron**
 ▪ Graded depolarization
 o **Step 3: Information processing by postsynaptic cell**
 ▪ Triggered by neurotransmitters
 o **Step 4: Activation of motor neuron**
 ▪ Action potential
 o **Step 5: Response of peripheral effector**
 ▪ Triggered by neurotransmitters

13-6 Reflexes
• Four Classifications of Reflexes
 1. By early development
 2. By type of motor response
 3. By complexity of neural circuit
 4. By site of information processing

13-6 Reflexes
• Development of Reflexes
 o **Innate reflexes**
 ▪ Basic neural reflexes
 ▪ Formed before birth
 o **Acquired reflexes**
13-6 Reflexes
• Motor Response
 o Nature of resulting motor response
 ▪ Somatic reflexes
 ▪ Involuntary control of nervous system
 ▪ Superficial reflexes of skin, mucous membranes
 ▪ Stretch or deep tendon reflexes (e.g., patellar, or “knee-jerk,” reflex)
 ▪ Visceral reflexes (autonomic reflexes)
 ▪ Control systems other than muscular system

13-6 Reflexes
• Complexity of Neural Circuit
 o Monosynaptic reflex
 ▪ Sensory neuron synapses directly onto motor neuron
 o Polysynaptic reflex
 ▪ At least one interneuron between sensory neuron and motor neuron

13-6 Reflexes
• Sites of Information Processing
 o Spinal reflexes
 ▪ Occur in spinal cord
 o Cranial reflexes
 ▪ Occur in brain

13-7 Spinal Reflexes
• Spinal Reflexes
 o Range in increasing order of complexity
 ▪ Monosynaptic reflexes
 ▪ Polysynaptic reflexes
 ▪ Intersegmental reflex arcs
 ▪ Many segments interact
 ▪ Produce highly variable motor response

13-7 Spinal Reflexes
• Monosynaptic Reflexes
 o A stretch reflex
 ▪ Have least delay between sensory input and motor output
 ▪ For example, stretch reflex (such as patellar reflex)
13-7 Spinal Reflexes

- **Muscle Spindles**
 - The receptors in stretch reflexes
 - Bundles of small, specialized *intrafusal muscle fibers*
 - Innervated by sensory and motor neurons
 - Surrounded by *extrafusal muscle fibers*
 - Which maintain tone and contract muscle

- **The Sensory Region**
 - Central region of intrafusal fibers
 - Wound with dendrites of sensory neurons
 - Sensory neuron axon enters CNS in dorsal root
 - Synapses onto motor neurons (gamma motor neurons)
 - In anterior gray horn of spinal cord

- **Gamma Efferents**
 - Axons of the motor neurons
 - Complete reflex arc
 - Synapse back onto intrafusal fibers
 - Important in voluntary muscle contractions
 - Allow CNS to adjust sensitivity of muscle spindles

- **Postural Reflexes**
 - Stretch reflexes
 - Maintain normal upright posture
 - Stretched muscle responds by contracting
 - Automatically maintains balance

- **Polysynaptic Reflexes**
 - More complicated than monosynaptic reflexes
 - Interneurons control more than one muscle group
 - Produce either EPSPs or IPSPs

© 2015 Pearson Education, Inc.
• The **Tendon Reflex**
 - Prevents skeletal muscles from:
 - Developing too much tension
 - Tearing or breaking tendons
 - Sensory receptors unlike muscle spindles or proprioceptors

13-7 Spinal Reflexes

Withdrawal Reflexes

- Move body part away from stimulus (pain or pressure)
 - For example, **flexor reflex**
 - Pulls hand away from hot stove
 - Strength and extent of response
 - Depend on intensity and location of stimulus

13-7 Spinal Reflexes

Reciprocal Inhibition

- For flexor reflex to work
 - The stretch reflex of antagonistic (extensor) muscle must be inhibited (reciprocal inhibition) by interneurons in spinal cord

13-7 Spinal Reflexes

Reflex Arcs

- **Ipsilateral reflex arcs**
 - Occur on same side of body as stimulus
 - Stretch, tendon, and withdrawal reflexes

- **Crossed extensor reflexes**
 - Involve a **contralateral reflex arc**
 - Occur on side opposite stimulus

13-7 Spinal Reflexes

Crossed Extensor Reflexes

- Occur simultaneously, coordinated with flexor reflex
 - For example, flexor reflex causes leg to pull up
 - Crossed extensor reflex straightens other leg
 - To receive body weight
 - Maintained by reverberating circuits

13-7 Spinal Reflexes

Five General Characteristics of Polysynaptic Reflexes

1. **Involve pools of interneurons**
2. **Are intersegmental in distribution**
3. **Involve reciprocal inhibition**
4. *Have reverberating circuits*
 - Which prolong reflexive motor response
5. *Several reflexes cooperate*
 - To produce coordinated, controlled response

13-8 The Brain Can Alter Spinal Reflexes

- **Integration and Control of Spinal Reflexes**
 - Reflex behaviors are automatic
 - But processing centers in brain can facilitate or inhibit reflex motor patterns based in spinal cord

13-8 The Brain Can Alter Spinal Reflexes

- **Voluntary Movements and Reflex Motor Patterns**
 - Higher centers of brain incorporate lower, reflexive motor patterns
 - Automatic reflexes
 - Can be activated by brain as needed
 - Use few nerve impulses to control complex motor functions
 - Walking, running, jumping

13-8 The Brain Can Alter Spinal Reflexes

- **Reinforcement** of Spinal Reflexes
 - Higher centers reinforce spinal reflexes
 - By stimulating excitatory neurons in brain stem or spinal cord
 - Creating EPSPs at reflex motor neurons
 - Facilitating postsynaptic neurons

13-8 The Brain Can Alter Spinal Reflexes

- **Inhibition of Spinal Reflexes**
 - Higher centers inhibit spinal reflexes by:
 - Stimulating inhibitory neurons
 - Creating IPSPs at reflex motor neurons
 - Suppressing postsynaptic neurons

13-8 The Brain Can Alter Spinal Reflexes

- **The Babinski Reflexes**
 - Normal in infants
 - May indicate CNS damage in adults