Chapter 3

The Cellular Level of Organization

An Introduction to Cells

- Cell Theory
 - o Developed from Robert Hooke's research
 - Cells are the building blocks of all plants and animals
 - All cells come from the division of preexisting cells
 - Cells are the smallest units that perform all vital physiological functions
 - Each cell maintains homeostasis at the cellular level

An Introduction to Cells

- Sex Cells (Germ Cells)
 - o Reproductive cells
 - o Male sperm
 - Female *oocyte* (a cell that develops into an egg)
- Somatic Cells
 - Soma = body
 - All body cells except sex cells

3-1 Plasma Membrane

- Extracellular Fluid (Interstitial Fluid)
 - A watery medium that surrounds a cell
 - **Plasma membrane** (cell membrane) separates cytoplasm from the extracellular fluid
 - Cytoplasm
 - Cytosol = liquid
 - Intracellular structures collectively known as organelles

3-1 Plasma Membrane

- Functions of the Plasma Membrane
 - Physical Isolation
 - Barrier
 - Regulation of Exchange with the Environment
 - lons and nutrients enter
 - Wastes eliminated and cellular products released

3-1 Plasma Membrane

- Functions of the Plasma Membrane
 - Sensitivity to the Environment

- Extracellular fluid composition
- Chemical signals
- o Structural Support
 - Anchors cells and tissues

3-1 Plasma Membrane

- Membrane Lipids
 - Phospholipid bilayer
 - Hydrophilic heads toward watery environment, both sides
 - Hydrophobic fatty-acid tails inside membrane
 - Barrier to ions and water soluble compounds

3-1 Plasma Membrane

- Membrane Proteins
 - o Integral proteins
 - Within the membrane
 - Peripheral proteins
 - Bound to inner or outer surface of the membrane

3-1 Plasma Membrane

- Membrane Proteins
 - Anchoring proteins (stabilizers)
 - Attach to inside or outside structures
 - Recognition proteins (*identifiers*)
 - Label cells as normal or abnormal
 - o Enzymes
 - Catalyze reactions

3-1 Plasma Membrane

- Membrane Proteins
 - Receptor proteins
 - Bind and respond to ligands (ions, hormones)
 - Carrier proteins
 - Transport specific solutes through membrane
 - Channels
 - Regulate water flow and solutes through membrane

3-1 Plasma Membrane

- Membrane Carbohydrates
 - Proteoglycans, glycoproteins, and glycolipids
 - Extend outside cell membrane
 - Form sticky "sugar coat" (glycocalyx)

- Functions of the glycocalyx
 - Lubrication and Protection
 - Anchoring and Locomotion
 - Specificity in Binding (receptors)
 - Recognition (immune response)

- Cytoplasm
 - o All materials inside the cell and outside the nucleus
 - Cytosol (*intracellular* fluid)
 - Dissolved materials
 - Nutrients, ions, proteins, and waste products
 - High potassium/low sodium
 - High protein
 - High carbohydrate/low amino acid and fat
 - Organelles
 - Structures with specific functions

3-2 Organelles and the Cytoplasm

- The Organelles
 - Nonmembranous organelles
 - No membrane
 - Direct contact with cytosol
 - Include the cytoskeleton, microvilli, centrioles, cilia, ribosomes, and proteasomes
 - Membranous organelles
 - Covered with plasma membrane
 - Isolated from cytosol
 - Include the endoplasmic reticulum (ER), the Golgi apparatus, lysosomes, peroxisomes, and mitochondria

3-2 Organelles and the Cytoplasm

• Nonmembranous Organelles

- Six types of nonmembranous organelles
 - 1. Cytoskeleton
 - 2. Microvilli
 - 3. Centrioles
 - 4. Cilia
 - 5. Ribosomes
 - 6. Proteasomes

3-2 Organelles and the Cytoplasm

• The Cytoskeleton

- Structural proteins for shape and strength
 - Microfilaments
 - Intermediate filaments
 - Microtubules

• The Cytoskeleton

- Microfilaments thin filaments composed of the protein actin
 - Provide additional mechanical strength
 - Interact with proteins for consistency
 - Pair with thick filaments of *myosin* for muscle movement

3-2 Organelles and the Cytoplasm

- The Cytoskeleton
 - Intermediate filaments mid-sized between microfilaments and thick filaments
 - Durable (collagen)
 - Strengthen cell and maintain shape
 - Stabilize organelles
 - Stabilize cell position

3-2 Organelles and the Cytoplasm

- The Cytoskeleton
 - Microtubules large, hollow tubes of tubulin protein
 - Attach to centrosome
 - Strengthen cell and anchor organelles
 - Change cell shape
 - Move vesicles within cell (kinesin and dynein)
 - Form spindle apparatus

3-2 Organelles and the Cytoplasm

- The Cytoskeleton
 - Thick filaments
 - Myosin protein in muscle cells

3-2 Organelles and the Cytoplasm

- Microvilli
 - Increase surface area for absorption
 - Attach to cytoskeleton

• Centrioles in the Centrosome

- o Centrioles form spindle apparatus during cell division
- Centrosome: cytoplasm surrounding centriole

- Cilia
 - o Small hairlike extensions
 - Cilia move fluids across the cell surface

- Ribosomes
 - Build polypeptides in protein synthesis
 - o Two types
 - 1. Free ribosomes in cytoplasm
 - o Manufacture proteins for cell
 - 2. Fixed ribosomes attached to ER
 - Manufacture proteins for secretion

Proteasomes

- Contain enzymes (proteases)
- o Disassemble damaged proteins for recycling

3-2 Organelles and the Cytoplasm

- Membranous Organelles
 - Five types of membranous organelles
 - 1. Endoplasmic reticulum (ER)
 - 2. Golgi apparatus
 - 3. Lysosomes
 - 4. Peroxisomes
 - 5. Mitochondria

3-2 Organelles and the Cytoplasm

- Endoplasmic Reticulum (ER)
 - *Endo-* = within, *plasm* = cytoplasm, *reticulum* = network
 - **Cisternae** are storage chambers within membranes
 - Functions
 - 1. Synthesis of proteins, carbohydrates, and lipids
 - 2. Storage of synthesized molecules and materials
 - 3. Transport of materials within the ER
 - 4. Detoxification of drugs or toxins

3-2 Organelles and the Cytoplasm

- Endoplasmic Reticulum (ER)
 - Smooth endoplasmic reticulum (SER)
 - No ribosomes attached
 - Synthesizes lipids and carbohydrates
 - Phospholipids and cholesterol (membranes)
 - Steroid hormones (reproductive system)

- Glycerides (storage in liver and fat cells)
- Glycogen (storage in muscles)

• Endoplasmic Reticulum (ER)

- Rough endoplasmic reticulum (RER)
 - Surface covered with ribosomes
 - Active in protein and glycoprotein synthesis
 - Folds polypeptide protein structures
 - Encloses products in transport vesicles

3-2 Organelles and the Cytoplasm

• Golgi Apparatus

- Vesicles enter forming face and exit maturing face
- Functions
 - 1. Modifies and packages secretions
 - Hormones or enzymes
 - Released through exocytosis
 - 2. Renews or modifies the plasma membrane
 - 3. Packages special enzymes within vesicles for use in the cytoplasm

3-2 Organelles and the Cytoplasm

• Lysosomes

- Powerful enzyme-containing vesicles
 - Lyso- = dissolve, soma = body
- o Primary lysosome
 - Formed by Golgi apparatus and inactive enzymes
- Secondary lysosome
 - Lysosome fused with damaged organelle
 - Digestive enzymes activated
 - Toxic chemicals isolated

3-2 Organelles and the Cytoplasm

- Lysosomes
 - Functions
 - 1. Clean up inside cells
 - 2. Autolysis

3-2 Organelles and the Cytoplasm

- Clean Up Inside Cells
 - Break down large molecules
 - o Attack bacteria

- Recycle damaged organelles
- Eject wastes by exocytosis

• Autolysis

- \circ Auto- = self, lysis = break
- o Self-destruction of damaged cells
 - Lysosome membranes break down
 - Digestive enzymes released
 - Cell decomposes
 - Cellular materials recycle

3-2 Organelles and the Cytoplasm

• Peroxisomes

- Are enzyme-containing vesicles
 - Break down fatty acids, organic compounds
 - Produce hydrogen peroxide (H₂O₂)
 - Replicate by division

3-2 Organelles and the Cytoplasm

- Membrane Flow
 - A continuous exchange of membrane parts by vesicles
 - All membranous organelles (except mitochondria)
 - Allows adaptation and change

3-2 Organelles and the Cytoplasm

• Mitochondria

- Have smooth outer membrane and inner membrane with numerous folds (cristae)
- Matrix
 - Fluid around cristae
- *Mitochondrion* takes chemical energy from food (glucose)
 - Produces energy molecule ATP

3-2 Organelles and the Cytoplasm

- Mitochondrial Energy Production
 - Glycolysis
 - Glucose to pyruvic acid (in cytosol)
 - Citric acid cycle (also known as the *Krebs cycle* and the *tricarboxylic acid cycle*, or *TCA cycle*)
 - Pyruvic acid to CO₂ (in matrix)
 - Electron transport chain

Inner mitochondrial membrane

3-2 Organelles and the Cytoplasm

- Mitochondrial Energy Production
 - Called **aerobic metabolism** (cellular respiration)
 - Mitochondria use oxygen to break down food and produce ATP
 - Glucose + oxygen + ADP \rightarrow carbon dioxide + water + ATP

3-3 Cell Nucleus

- Nucleus
 - Largest organelle
 - The cell's control center
 - Nuclear envelope
 - Double membrane around the nucleus
 - Perinuclear space
 - Between the two layers of the nuclear envelope
 - Nuclear pores
 - Communication passages

3-3 Cell Nucleus

- Contents of the Nucleus
 - o DNA
 - All information to build and run organisms
 - Nucleoplasm
 - Fluid containing ions, enzymes, nucleotides, and some RNA
 - Nuclear matrix
 - Support filaments

3-3 Cell Nucleus

- Contents of the Nucleus
 - o Nucleoli
 - Are related to protein production
 - Are made of RNA, enzymes, and histones
 - Synthesize rRNA and ribosomal subunits
 - Nucleosomes
 - DNA coiled around histones

3-3 Cell Nucleus

- Contents of the Nucleus
 - Chromatin
 - Loosely coiled DNA (cells not dividing)
 - Chromosomes

Tightly coiled DNA (cells dividing)

3-3 Cell Nucleus

- Information Storage in the Nucleus
 - o DNA
 - Instructions for every protein in the body
 - o Gene
 - DNA instructions for one protein
 - Genetic code
 - The chemical language of DNA instructions

 Sequence of bases (A, T, C, G)
 - Triplet code
 - Triplet code
 - \circ 3 bases = 1 amino acid

3-4 Protein Synthesis

- The Role of Gene Activation in Protein Synthesis
 - The nucleus contains chromosomes
 - Chromosomes contain DNA
 - DNA stores genetic instructions for proteins
 - Proteins determine cell structure and function

3-4 Protein Synthesis

- The Role of Gene Activation in Protein Synthesis
 - Gene activation uncoiling DNA to use it
 - Promoter
 - Terminator
 - Transcription
 - Copies instructions from DNA to mRNA (in nucleus)
 - RNA polymerase produces messenger RNA (mRNA)

3-4 Protein Synthesis

- The Role of Gene Activation in Protein Synthesis
 - Translation
 - Ribosome reads code from mRNA (in cytoplasm)
 - Assembles amino acids into polypeptide chain
 - Processing
 - RER and Golgi apparatus produce protein

3-4 Protein Synthesis

- The Transcription of mRNA
 - A gene is *transcribed* to mRNA in three steps
 - 1. Gene activation

- 2. DNA to mRNA
- 3. RNA processing

3-4 Protein Synthesis

- Step 1: Gene activation
 - Uncoils DNA, removes histones
 - o Start (promoter) and stop codes on DNA mark location of gene
 - Coding strand is code for protein
 - Template strand is used by RNA polymerase molecule

3-4 Protein Synthesis

- Step 2: DNA to mRNA
 - Enzyme RNA polymerase transcribes DNA
 - Binds to promoter (*start*) sequence
 - Reads DNA code for gene
 - Binds nucleotides to form messenger RNA (mRNA)
 - mRNA duplicates DNA coding strand, uracil replaces thymine

3-4 Protein Synthesis

- Step 3: RNA processing
 - At stop signal, mRNA detaches from DNA molecule
 - Code is edited (RNA processing)
 - Unnecessary codes (introns) removed
 - Good codes (exons) spliced together
 - Triplet of three nucleotides (codon) represents one amino acid

3-4 Protein Synthesis

- Translation
 - o mRNA moves:
 - From the nucleus through a nuclear pore
 - o mRNA moves:
 - To a ribosome in cytoplasm surrounded by amino acids
 - mRNA binds to ribosomal subunits
 - tRNA delivers amino acids to mRNA

3-4 Protein Synthesis

- Translation
 - tRNA anticodon binds to mRNA codon
 - One mRNA codon *translates* to one amino acid
 - Enzymes join amino acids with peptide bonds
 - Polypeptide chain has specific sequence of amino acids
 - At stop codon, components separate

3-4 Protein Synthesis

- How the Nucleus Controls Cell Structure and Function
 - 1. Direct control through synthesis of:
 - Structural proteins
 - Secretions (environmental response)
 - 2. Indirect control over metabolism through enzymes

3-5 Diffusion and Osmosis

- Membrane Transport
 - The plasma (cell) membrane is a barrier, but:
 - Nutrients must get in
 - Products and wastes must get out
 - **Permeability** determines what moves in and out of a cell, and a membrane that:
 - Lets nothing in or out is **impermeable**
 - Lets anything pass is freely permeable
 - Restricts movement is selectively permeable

3-5 Diffusion and Osmosis

- Membrane Transport
 - o Plasma membrane is selectively permeable
 - Allows some materials to move freely
 - Restricts other materials
 - Selective permeability restricts materials based on:
 - Size
 - Electrical charge
 - Molecular shape
 - Lipid solubility

3-5 Diffusion and Osmosis

- Membrane Transport
 - Transport through a plasma membrane can be:
 - Active (requiring energy and ATP)
 - Passive (no energy required)
 - Diffusion (passive)
 - o Carrier-mediated transport (passive or active)
 - Vesicular transport (active)

3-5 Diffusion and Osmosis

- Diffusion
 - All molecules are constantly in motion
 - Molecules in solution move randomly

- Random motion causes mixing
- Concentration is the amount of solute in a solvent
- Concentration gradient
 - More solute in one part of a solvent than another

3-5 Diffusion and Osmosis

- Factors Influencing Diffusion
 - o Distance the particle has to move
 - Molecule Size
 - Smaller is faster
 - o Temperature
 - More heat, faster motion
 - o Concentration gradient
 - The difference between high and low concentrations
 - Electrical forces
 - Opposites attract, like charges repel

3-5 Diffusion and Osmosis

- Diffusion across Plasma Membranes
 - Can be simple or channel mediated
 - Materials that diffuse through plasma membrane by simple diffusion
 - Lipid-soluble compounds (alcohols, fatty acids, and steroids)
 - Dissolved gases (oxygen and carbon dioxide)

3-5 Diffusion and Osmosis

- Diffusion across Plasma Membranes
 - Channel-mediated diffusion
 - Water-soluble compounds and ions
 - Factors in channel-mediated diffusion
 - Size
 - Charge
 - Interaction with the channel leak channels

3-5 Diffusion and Osmosis

- Osmosis: A Special Case of Diffusion
 - **Osmosis** is the diffusion of water across the cell membrane
 - More solute molecules, lower concentration of water molecules
 - Membrane must be freely permeable to water, selectively permeable to solutes
 - Water molecules diffuse across membrane toward solution with more solutes
 - Volume increases on the side with more solutes

3-5 Diffusion and Osmosis

- Osmosis: A Special Case of Diffusion
 - Osmotic pressure
 - Is the force of a concentration gradient of water
 - Equals the force (hydrostatic pressure) needed to block osmosis

3-5 Diffusion and Osmosis

- Osmolarity and Tonicity
 - The osmotic effect of a solute on a cell
 - Two fluids may have equal **osmolarity**, but different **tonicity**
 - **Isotonic** (*iso-* = same, *tonos* = tension)
 - A solution that does not cause osmotic flow of water in or out of a cell
 - **Hypotonic** (*hypo-* = below)
 - Has less solutes and loses water through osmosis
 - **Hypertonic** (*hyper-* = above)
 - Has more solutes and gains water by osmosis

3-5 Diffusion and Osmosis

- Osmolarity and Tonicity
 - A cell in a hypotonic solution:
 - Gains water
 - Ruptures (hemolysis of red blood cells)
 - A cell in a hypertonic solution:
 - Loses water
 - Shrinks (crenation of red blood cells)

3-6 Carriers and Vesicles

• Carrier-Mediated Transport

- Of ions and organic substrates
 - Characteristics
 - o Specificity
 - One transport protein, one set of substrates
 - Saturation limits
 - Rate depends on transport proteins, not substrate
 - Regulation
 - Cofactors such as hormones

3-6 Carriers and Vesicles

- Carrier-Mediated Transport
 - Cotransport
 - Two substances move in the same direction at the same time
 - Countertransport

• One substance moves in while another moves out

3-6 Carriers and Vesicles

- Carrier-Mediated Transport
 - Facilitated diffusion
 - Passive
 - Carrier proteins transport molecules too large to fit through channel proteins (glucose, amino acids)
 - Molecule binds to receptor site on carrier protein
 - Protein changes shape, molecules pass through
 - Receptor site is specific to certain molecules

3-6 Carriers and Vesicles

- Carrier-Mediated Transport
 - Active transport (primary or secondary)
 - Active transport proteins
 - Move substrates against concentration gradient
 - \circ $\,$ Require energy, such as ATP $\,$
 - \circ lon pumps move ions (Na⁺, K⁺, Ca²⁺, Mg²⁺)
 - Exchange pump countertransports two ions at the same time

3-6 Carriers and Vesicles

- Carrier-Mediated Transport
 - Primary active transport
 - Sodium-potassium exchange pump
 - o Active transport, carrier mediated
 - Sodium ions (Na⁺) out, potassium ions (K⁺) in
 - 1 ATP moves 3 Na⁺ and 2 K⁺

3-6 Carriers and Vesicles

• Carrier-Mediated Transport

- Secondary active transport
 - Na⁺ concentration gradient drives glucose transport
 - ATP energy pumps Na⁺ back out

3-6 Carriers and Vesicles

- Vesicular Transport (Bulk Transport)
 - o Materials move into or out of cell in vesicles
 - Endocytosis (endo- = inside) is active transport using ATP
 - Receptor mediated
 - Pinocytosis
 - o Phagocytosis

3-6 Carriers and Vesicles

- Endocytosis
 - Receptor-mediated endocytosis
 - Receptors (glycoproteins) bind target molecules (ligands)
 - Coated vesicle (endosome) carries ligands and receptors into the cell

3-6 Carriers and Vesicles

- Endocytosis
 - Pinocytosis
 - Endosomes "drink" extracellular fluid
 - Phagocytosis
 - Pseudopodia (pseudo- = false, pod- = foot)
 - Engulf large objects in phagosomes
- **Exocytosis** (*exo-* = outside)
 - o Granules or droplets are released from the cell

3-7 Transmembrane Potential

- Transmembrane Potential
 - Charges are separated creating a **potential difference**
 - Unequal charge across the plasma membrane is transmembrane potential
 - Resting potential ranges from -10 mV to -100 mV, depending on cell type

3-8 Cell Life Cycle

- Cell Life Cycle
 - Most of a cell's life is spent in a nondividing state (interphase)
 - Body (somatic) cells divide in three stages
 - DNA replication duplicates genetic material exactly
 - Mitosis divides genetic material equally
 - Cytokinesis divides cytoplasm and organelles into two daughter cells

3-8 Cell Life Cycle

- DNA Replication
 - Helicases unwind the DNA strands
 - o DNA polymerase
 - 1. Promotes bonding between the nitrogenous bases of the DNA strand and complementary DNA nucleotides dissolved in the nucleoplasm
 - 2. Links the nucleotides by covalent bonds
 - o DNA polymerase works in one direction
 - Ligases piece together sections of DNA

3-8 Cell Life Cycle

Interphase

- The nondividing period
 - **G-zero** (**G**₀) **phase** specialized cell functions only
 - **G**₁ **phase** cell growth, organelle duplication, protein synthesis
 - S phase DNA replication and histone synthesis
 - **G**₂ **phase** finishes protein synthesis and centriole replication

3-8 Cell Life Cycle

- Mitosis
 - Divides duplicated DNA into two sets of **chromosomes**
 - DNA coils tightly into chromatids
 - Chromatids connect at a centromere
 - Protein complex around centromere is **kinetochore**

3-8 Cell Life Cycle

- Mitosis
 - Prophase
 - Nucleoli disappear
 - Centriole pairs move to cell poles
 - Microtubules (spindle fibers) extend between centriole pairs
 - Nuclear envelope disappears
 - Spindle fibers attach to kinetochore
 - Metaphase
 - Chromosomes align in a central plane (metaphase plate)

3-8 Cell Life Cycle

- Mitosis
 - Anaphase
 - Microtubules pull chromosomes apart
 - **Daughter chromosomes** group near centrioles
 - Telophase
 - Nuclear membranes re-form
 - Chromosomes uncoil
 - Nucleoli reappear
 - Cell has two complete nuclei

3-8 Cell Life Cycle

- Cytokinesis
 - Division of the cytoplasm
 - Cleavage furrow around metaphase plate
 - Membrane closes, producing daughter cells

3-8 Cell Life Cycle

- The Mitotic Rate and Energy Use
 - Rate of cell division
 - Slower mitotic rate means longer cell life
 - Cell division requires energy (ATP)
 - o Muscle cells, neurons rarely divide
 - Exposed cells (skin and digestive tract) live only days or hours replenished by stem cells

3-9 Regulation of the Cell Life Cycle

- Cell Division
 - o Normally, cell division balances cell loss
 - o Increased cell division
 - Internal factors (M-phase promoting factor, MPF)
 - Extracellular chemical factors (growth factors)
 - Decreased cell division
 - Repressor genes (faulty repressors cause cancers)
 - Worn out telomeres (terminal DNA segments)

3-10 Cell Division and Cancer

- Cancer Develops in Steps
 - Abnormal cell
 - Primary tumor
 - o Metastasis
 - Secondary tumor

3-10 Cell Division and Cancer

- **Tumor** (*Neoplasm*)
 - Enlarged mass of cells
 - Abnormal cell growth and division
 - Benign tumor
 - Contained, not life threatening unless large
 - Malignant tumor
 - Spreads into surrounding tissues (invasion)
 - Starts new tumors (metastasis)

3-11 Differentiation

- Differentiation
 - All cells carry complete DNA instructions for all body functions
 - o Cells specialize or differentiate
 - To form tissues (liver cells, fat cells, and neurons)
 - By turning off all genes not needed by that cell

- All body cells, except sex cells, contain the same 46 chromosomes
 Differentiation depends on which genes are active and which are inactive