Chapter 2

The Chemical Level of Organization

An Introduction to the Chemical Level of Organization

- Chemistry
 - o Is the science of change
 - Topics of this chapter include:
 - The structure of atoms
 - The basic chemical building blocks
 - How atoms combine to form increasingly complex structures

2-1 Atoms and Atomic Structure

- Matter
 - Is made up of atoms
 - Atoms join together to form chemicals with different characteristics
 - Chemical characteristics determine physiology at the molecular and cellular levels

2-1 Atoms and Atomic Structure

- Subatomic Particles
 - o **Proton**
 - Positive charge, 1 mass unit
 - o Neutron
 - Neutral, 1 mass unit
 - o Electron
 - Negative charge, low mass

2-1 Atoms and Atomic Structure

- Atomic Structure
 - Atomic number
 - Number of protons
 - o Nucleus
 - Contains protons and neutrons
 - Electron cloud
 - Contains electrons

2-1 Atoms and Atomic Structure

- Elements and Isotopes
 - Elements are determined by the atomic number of an atom
 - Remember, atomic number = number of protons

• Elements are the most basic chemicals

2-1 Atoms and Atomic Structure

- Elements and Isotopes
 - o Isotopes are the specific version of an element based on its mass number
 - Mass number = number of protons plus the number of neutrons
 - Only neutrons are different because the number of protons determines the element

2-1 Atoms and Atomic Structure

- Atomic Weight
 - Exact mass of all particles
 - Measured in moles
 - Average of the mass numbers of the isotopes

2-1 Atoms and Atomic Structure

- Electrons and Energy Levels
 - Electrons in the electron cloud determine the reactivity of an atom
 - The electron cloud contains shells, or energy levels, that hold a maximum number of electrons
 - Lower shells fill first
 - Outermost shell is the valence shell, and it determines bonding
 - The number of electrons per shell corresponds to the number of atoms in that row of the periodic table

2-2 Molecules and Compounds

Chemical Bonds

- o Involve the sharing, gaining, and losing of electrons in the valence shell
- Three major types of chemical bonds
 - 1. Ionic bonds
 - Attraction between cations (electron donor) and anions (electron acceptor)
 - 2. Covalent bonds
 - Strong electron bonds involving shared electrons
 - 3. Hydrogen bonds
 - Weak polar bonds based on partial electrical attractions

2-2 Molecules and Compounds

- Chemical Bonds
 - Form molecules and/or compounds
 - Molecules

- Two or more atoms joined by strong bonds
- Compounds
 - Two or more atoms *OF DIFFERENT ELEMENTS* joined by strong or weak bonds
- Compounds are all molecules, but not all molecules are compounds
 - H₂ = molecule only
 - H_2O = molecule and compound

2-2 Molecules and Compounds

• Ionic Bonds

- One atom—the electron donor—loses one or more electrons and becomes a cation, with a positive charge
- Another atom—the electron acceptor—gains those same electrons and becomes an anion, with a negative charge
- Attraction between the opposite charges then draws the two ions together

2-2 Molecules and Compounds

Covalent Bonds

- Involve the sharing of pairs of electrons between atoms
 - One electron is donated by each atom to make the pair of electrons
 - Sharing one pair of electrons is a **single covalent bond**
 - Sharing two pairs of electrons is a **double covalent bond**
 - Sharing three pairs of electrons is a triple covalent bond

2-2 Molecules and Compounds

• Covalent Bonds

- Nonpolar covalent bonds
 - Involve equal sharing of electrons because atoms involved in the bond have equal pull for the electrons
- Polar covalent bonds
 - Involve the *unequal* sharing of electrons because one of the atoms involved in the bond has a disproportionately strong pull on the electrons
 - Form polar molecules like water

2-2 Molecules and Compounds

• Hydrogen Bonds

- Bonds between adjacent molecules, not atoms
- Involve slightly positive and slightly negative portions of polar molecules being attracted to one another
- \circ Hydrogen bonds between H₂O molecules cause surface tension

2-2 Molecules and Compounds

- States of Matter
 - o **Solid**
 - Constant volume and shape
 - o Liquid
 - Constant volume but changes shape
 - o Gas
 - Changes volume and shape

2-3 Chemical Reactions

• In a Chemical Reaction

- o Either new bonds are formed or existing bonds are broken
 - Reactants
 - Materials going into a reaction
 - Products
 - Materials coming out of a reaction
 - Metabolism
 - All of the reactions that are occurring at one time

2-3 Chemical Reactions

- Basic Energy Concepts
 - Energy
 - The power to do work
 - o Work
 - A change in mass or distance
 - Kinetic energy
 - Energy of motion
 - Potential energy
 - Stored energy
 - Chemical energy
 - Potential energy stored in chemical bonds

2-3 Chemical Reactions

- Types of Chemical Reactions
 - Decomposition reaction (catabolism)
 - Synthesis reaction (anabolism)
 - Exchange reaction
 - Reversible reaction

2-3 Chemical Reactions

- Decomposition Reaction (Catabolism)
 - Breaks chemical bonds

- $\circ \quad \mathsf{AB} \to \mathsf{A} + \mathsf{B}$
- Hydrolysis A-B + $H_2O \rightarrow A-H + HO-B$
- Synthesis Reaction (Anabolism)
 - Forms chemical bonds
 - $\circ \quad \mathsf{A} + \mathsf{B} \to \mathsf{A}\mathsf{B}$
 - o Dehydration synthesis (condensation reaction)
- $A-H + HO-B \rightarrow A-B + H_2O$

2-3 Chemical Reactions

• Exchange Reaction

- o Involves decomposition first, then synthesis
- $\circ \quad \mathsf{AB} + \mathsf{CD} \to \mathsf{AD} + \mathsf{CB}$

2-3 Chemical Reactions

• Reversible Reaction

- $\circ \quad \mathsf{A} + \mathsf{B} \leftrightarrow \mathsf{A}\mathsf{B}$
- At equilibrium the amounts of chemicals do not change even though the reactions are still occurring
 - Reversible reactions seek equilibrium, balancing opposing reaction rates
 - Add or remove reactants
 - Reaction rates adjust to reach a new equilibrium

2-4 Enzymes

- Chemical Reactions
 - In cells, cannot start without help
 - Activation energy is the amount of energy needed to get a reaction started
 - Enzymes are protein catalysts that lower the activation energy of reactions

2-4 Enzymes

- **Exergonic** (Exothermic) Reactions
 - Produce more energy than they use
- Endergonic (Endothermic) Reactions
 - Use more energy than they produce

2-5 Inorganic and Organic Compounds

- Nutrients
 - \circ $\;$ Essential molecules obtained from food
- Metabolites

• Molecules made or broken down in the body

• Inorganic Compounds

- Molecules not based on carbon and hydrogen
- o Carbon dioxide, oxygen, water, and inorganic acids, bases, and salts

• Organic Compounds

- Molecules based on carbon and hydrogen
- Carbohydrates, proteins, lipids, and nucleic acids

2-6 Properties of Water

- Water
 - Accounts for up to two-thirds of your total body weight
 - A **solution** is a uniform mixture of two or more substances
 - It consists of a solvent, or medium, in which atoms, ions, or molecules of another substance, called a solute, are individually dispersed

2-6 Properties of Water

- Solubility
 - Water's ability to dissolve a **solute** in a **solvent** to make a **solution**
- Reactivity
 - Most body chemistry occurs in water
- High Heat Capacity
 - Water's ability to absorb and retain heat
- Lubrication
 - \circ $\,$ To moisten and reduce friction

2-6 Properties of Water

- The Properties of Aqueous Solutions
 - o lons and polar compounds undergo **ionization**, or **dissociation**, in water
 - Polar water molecules form *hydration spheres* around ions and small polar molecules to keep them in solution

2-6 Properties of Water

- The Properties of Aqueous Solutions
 - o Electrolytes and body fluids
 - **Electrolytes** are inorganic ions that conduct electricity in solution
 - Electrolyte imbalance seriously disturbs vital body functions

2-6 Properties of Water

- The Properties of Aqueous Solutions
 - Hydrophilic and hydrophobic compounds
 - Hydrophilic

- *hydro- = water, philos = loving*
- Interacts with water
- Includes ions and polar molecules
- Hydrophobic
 - phobos = fear
 - Does NOT interact with water
 - Includes nonpolar molecules, fats, and oils

2-6 Properties of Water

- Colloids and Suspensions
 - \circ Colloid
 - A solution of very large organic molecules
 - For example, blood plasma
 - Suspension
 - A solution in which particles settle (sediment)
 - For example, whole blood
 - Concentration
 - The amount of solute in a solvent (mol/L, mg/mL)

2-7 pH and Homeostasis

- pH
 - \circ The concentration of hydrogen ions (H⁺) in a solution
- Neutral pH
 - $^{\circ}$ A balance of H⁺ and OH⁻
 - Pure water = 7.0

2-7 pH and Homeostasis

- Acidic pH Lower Than 7.0
 - \circ High H⁺ concentration
 - Low OH[−] concentration
- Basic (or alkaline) pH Higher Than 7.0
 - \circ Low H⁺ concentration
 - \circ High OH⁻ concentration
- pH of Human Blood
 - Ranges from 7.35 to 7.45

2-7 pH and Homeostasis

- pH Scale
 - Has an *inverse* relationship with H⁺ concentration
 - More H⁺ ions means *lower* pH, fewer H⁺ ions means *higher* pH

2-8 Inorganic Compounds

- Acid
 - o A solute that adds hydrogen ions to a solution
 - Proton donor
 - Strong acids dissociate completely in solution
- Base
 - A solute that removes hydrogen ions from a solution
 - Proton acceptor
 - Strong bases dissociate completely in solution
- Weak Acids and Weak Bases
 - Fail to dissociate completely
 - Help to balance the pH

2-8 Inorganic Compounds

- Salts
 - Solutes that dissociate into cations and anions other than hydrogen ions and hydroxide ions

2-8 Inorganic Compounds

- Buffers and pH Control
 - Buffers
 - Weak acid/salt compounds
 - Neutralize either strong acid or strong base
 - Sodium bicarbonate is very important in humans
 - o Antacids
 - Basic compounds that neutralize acid and form a salt
 - Alka-Seltzer, Tums, Rolaids, etc.

2-9 Carbohydrates

- Organic Molecules
 - Contain H, C, and usually O
 - Are covalently bonded
 - o Contain functional groups that determine chemistry
 - Carbohydrates
 - Lipids
 - Proteins (or amino acids)
 - Nucleic acids

2-9 Carbohydrates

- Carbohydrates
 - Contain carbon, hydrogen, and oxygen in a 1:2:1 ratio
 - Monosaccharide simple sugar

- Disaccharide two sugars
- *Polysaccharide* many sugars

2-9 Carbohydrates

• Monosaccharides

- Simple sugars with 3 to 7 carbon atoms
- o Glucose, fructose, galactose

• Disaccharides

- Two simple sugars condensed by dehydration synthesis
- o Sucrose, maltose

• Polysaccharides

- Many monosaccharides condensed by dehydration synthesis
- Glycogen, starch, cellulose

2-10 Lipids

- Lipids
 - Mainly hydrophobic molecules such as fats, oils, and waxes
 - Made mostly of carbon and hydrogen atoms
 - Include:
 - Fatty acids
 - Eicosanoids
 - Glycerides
 - Steroids
 - Phospholipids and glycolipids

2-10 Lipids

- Fatty Acids
 - Long chains of carbon and hydrogen with a *carboxyl group* (COOH) at one end
 - Are relatively nonpolar, *except* the carboxyl group
 - Fatty acids may be:
 - Saturated with hydrogen (no covalent bonds)
 - Unsaturated (one or more double bonds)
 - *Monounsaturated* = one double bond
 - *Polyunsaturated* = two or more double bonds

2-10 Lipids

- Eicosanoids
 - Derived from the fatty acid called *arachidonic acid*
 - o Leukotrienes
 - Active in immune system
 - **Prostaglandins**
 - Local hormones, short-chain fatty acids

2-10 Lipids

- Glycerides
 - Fatty acids attached to a **glycerol** molecule
 - Triglycerides are the three fatty-acid tails
 - Also called *triacylglycerols* or *neutral fats*
 - Have three important functions
 - 1. Energy source
 - 2. Insulation
 - 3. Protection

2-10 Lipids

• Steroids

- Four rings of carbon and hydrogen with an assortment of functional groups
- Types of steroids
 - Cholesterol
 - Component of plasma (cell) membranes
 - Estrogens and testosterone
 - Sex hormones
 - Corticosteroids and calcitriol
 - Metabolic regulation
 - Bile salts
 - Derived from steroids

2-10 Lipids

• Phospholipids and Glycolipids

- Diglycerides attached to either a *phosphate group* (*phospho*lipid) or a sugar (*glyco*lipid)
- Generally, both have hydrophilic heads and hydrophobic tails and are *structural lipids*, components of plasma (cell) membranes

2-11 Proteins

- Proteins
 - Are the most abundant and important organic molecules
 - Contain basic elements
 - Carbon (C), hydrogen (H), oxygen (O), and nitrogen (N)
 - Basic building blocks
 - 20 amino acids

2-11 Proteins

- Seven Major Protein Functions
 - 1. Support
 - Structural proteins

- 2. Movement
 - Contractile proteins
- 3. Transport
 - Transport (carrier) proteins
- 4. Buffering
 - Regulation of pH
- 5. Metabolic Regulation
 - Enzymes
- 6. Coordination and Control
 - Hormones
- 7. Defense
 - Antibodies

2-11 Proteins

- Protein Structure
 - Long chains of **amino acids**
 - Five components of amino acid structure
 - 1. Central carbon atom
 - 2. Hydrogen atom
 - 3. Amino group (---NH₂)
 - 4. Carboxyl group (—COOH)
 - 5. Variable side chain or R group

2-11 Proteins

- Hooking Amino Acids Together
 - Requires a dehydration synthesis between:
 - The amino group of one amino acid and the carboxyl group of another amino acid
 - Forms a **peptide bond**
 - Resulting molecule is a peptide

2-11 Proteins

- Protein Shape
 - Primary structure
 - The sequence of amino acids along a polypeptide
 - Secondary structure
 - Hydrogen bonds form spirals or pleats
 - Tertiary structure
 - Secondary structure folds into a unique shape
 - Quaternary structure
 - Final protein shape several tertiary structures together

2-11 Proteins

- Fibrous Proteins
 - Structural sheets or strands
- Globular Proteins
 - Soluble spheres with active functions
 - Protein function is based on shape
- Shape is based on sequence of amino acids

2-11 Proteins

- Enzyme Function
 - Enzymes are catalysts
 - Proteins that lower the activation energy of a chemical reaction
 - Are not changed or used up in the reaction
 - Enzymes also exhibit:
 - 1. Specificity will only work on limited types of substrates
 - 2. Saturation Limits by their concentration
 - 3. Regulation by other cellular chemicals

2-11 Proteins

- Cofactors and Enzyme Function
 - Cofactor
 - An ion or molecule that binds to an enzyme before substrates can bind
 - Coenzyme
 - Nonprotein organic cofactors (vitamins)
 - o Isozymes
 - Two enzymes that can catalyze the same reaction

2-11 Proteins

- Effects of Temperature and pH on Enzyme Function
 - o **Denaturation**
 - Loss of shape and function due to heat or pH

2-11 Proteins

- Glycoproteins and Proteoglycans
 - o Glycoproteins
 - Large protein + small carbohydrate
 - Includes enzymes, antibodies, hormones, and mucus production
 - o Proteoglycans
 - Large polysaccharides + polypeptides
 - Promote viscosity

2-12 Nucleic Acids

- Nucleic Acids
 - Are large organic molecules, found in the nucleus, which *store and process information* at the molecular level
 - Deoxyribonucleic acid (DNA)
 - Determines inherited characteristics
 - Directs protein synthesis
 - Controls enzyme production
 - Controls metabolism
 - Ribonucleic acid (RNA)
 - Controls intermediate steps in protein synthesis

2-12 Nucleic Acids

- Structure of Nucleic Acids
 - DNA and RNA are strings of nucleotides
 - Nucleotides
 - Are the building blocks of DNA and RNA
 - Have three molecular parts
 - 1. A pentose sugar (deoxyribose or ribose)
 - 2. Phosphate group
 - 3. Nitrogenous base (A, G, T, C, or U)

2-12 Nucleic Acids

- DNA and RNA
 - DNA is double stranded, and the bases form hydrogen bonds to hold the DNA together
 - o Sometimes RNA can bind to itself but is usually a single strand
 - DNA forms a twisting double helix
 - Complementary base pairs
 - Purines pair with pyrimidines
 - DNA
 - Adenine (A) and thymine (T)
 - Cytosine (C) and guanine (G)
 - RNA
 - Uracil (U) replaces thymine (T)

2-12 Nucleic Acids

- Types of RNA
 - Messenger RNA (mRNA)
 - Transfer RNA (tRNA)
 - Ribosomal RNA (rRNA)

2-13 High-Energy Compounds

- Nucleotides Can Be Used to Store Energy
 - Adenosine diphosphate (ADP)
 - Two phosphate groups; *di-* = 2
 - Adenosine triphosphate (ATP)
 - Three phosphate groups; *tri-* = 3
- Phosphorylation
 - Adding a phosphate group to ADP with a high-energy bond to form the high-energy compound ATP
 - Adenosine triphosphatase (ATPase)
 - \circ The enzyme that catalyzes the conversion of ATP to ADP

2-14 Chemicals and Cells

- Chemicals and Cells
 - Biochemical building blocks form functional units called cells
 - **Metabolic turnover** lets your body grow, change, and adapt to new conditions and activities
 - Your body recycles and renews all of its chemical components at intervals ranging from minutes to years